Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Diagonal lemma
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== The Diagonal Lemma and its proof == <blockquote>'''Diagonal Lemma''': Let <math>T</math> be a first-order theory containing <math>\mathsf{Q}</math> ([[Robinson arithmetic]]) and let <math>\psi (x)</math> be any formula in the language of <math>T</math> with only <math>x</math> as free variable. Then there is a sentence <math>\varphi</math> in the language of <math>T</math> s.t. <math>T \vdash \varphi \leftrightarrow \psi (\ulcorner \varphi \urcorner)</math>. </blockquote> Intuitively, <math>\varphi</math> is a [[self-referential]] sentence which "says of itself that it has the property <math>\psi</math>." '''Proof''': Let <math>diag_T:\mathbb{N}\to\mathbb{N}</math> be the recursive function which associates the code of each formula <math>\varphi (x)</math> with only one free variable <math>x</math> in the language of <math>T</math> with the code of the closed formula <math>\varphi (\ulcorner \varphi \urcorner )</math> (i.e. the substitution of <math>\ulcorner \varphi \urcorner </math> into <math>\varphi</math> for <math>x</math>) and <math>0</math> for other arguments. (The fact that <math>diag_T</math> is recursive depends on the choice of the Gödel numbering, here the [[Gödel's encoding|standard one]].) By the representation theorem, <math>T</math> represents every recursive function. Thus, there is a formula <math>\delta(x,y)</math> be the formula representing <math>diag_T</math>, in particular, for each <math>\varphi (x)</math>, <math>T \vdash \delta(\ulcorner \varphi \urcorner , y) \leftrightarrow y = \ulcorner \varphi (\ulcorner \varphi \urcorner) \urcorner </math>. Let <math>\psi(x)</math> be an arbitrary formula with only <math>x</math> as free variable. We now define <math>\chi (x)</math> as <math>\exists y (\delta(x,y) \land \psi(y))</math>, and let <math>\varphi </math> be <math>\chi (\ulcorner \chi \urcorner)</math>. Then the following equivalences are provable in <math>T</math>: <math>\varphi \leftrightarrow \chi(\ulcorner \chi \urcorner) \leftrightarrow \exists y (\delta(\ulcorner \chi \urcorner,y) \land \psi(y)) \leftrightarrow \exists y (y = \ulcorner \chi (\ulcorner \chi \urcorner) \urcorner \land \psi(y)) \leftrightarrow \exists y (y = \ulcorner \varphi \urcorner \land \psi(y)) \leftrightarrow \psi (\ulcorner \varphi \urcorner) </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)