Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirac comb
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Fourier transform == The [[continuous Fourier transform|Fourier transform]] of a Dirac comb is also a Dirac comb. For the Fourier transform <math>\mathcal{F}</math> expressed in [[Fourier transform#Other conventions|frequency domain]] (Hz) the Dirac comb <math>\operatorname{\text{Ш}}_{T}</math> of period <math>T</math> transforms into a rescaled Dirac comb of period <math>1/T,</math> i.e. for :<math>\mathcal{F}\left[ f \right](\xi)= \int_{-\infty}^{\infty} dt f(t) e^{- 2 \pi i\xi t}, </math> :<math>\mathcal{F}\left[ \operatorname{\text{Ш}}_{T} \right](\xi) = \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta(\xi-k \frac{1}{T}) = \frac{1}{T} \operatorname{\text{Ш}}_{\ \frac{1}{T}}(\xi) ~</math> is proportional to another Dirac comb, but with period <math>1/T</math> in frequency domain (radian/s). The Dirac comb <math>\operatorname{\text{Ш}}</math> of unit period <math>T=1</math> is thus an [[continuous Fourier transform#Eigenfunctions|eigenfunction]] of <math>\mathcal{F}</math> to the [[eigenvalue]] <math>1.</math> This result can be established{{sfn|Bracewell|1986}} by considering the respective Fourier transforms <math>S_{\tau}(\xi)=\mathcal{F}[s_{\tau}](\xi)</math> of the family of functions <math>s_{\tau}(x)</math> defined by :<math>s_{\tau}(x) = \tau^{-1} e^{-\pi \tau^2 x^2} \sum_{n=-\infty}^{\infty} e^{-\pi \tau^{-2} ( x-n)^{2} }.</math> Since <math>s_{\tau}(x)</math> is a convergent series of [[Gaussian function|Gaussian functions]], and Gaussians [[Fourier transform#Square-integrable functions, one-dimensional|transform]] into [[Normal distribution#Fourier transform and characteristic function|Gaussians]], each of their respective Fourier transforms <math>S_\tau(\xi)</math> also results in a series of Gaussians, and explicit calculation establishes that :<math>S_{\tau}(\xi) = \tau^{-1} \sum_{m=-\infty}^{\infty} e^{-\pi \tau^2 m^2} e^{-\pi \tau^{-2} ( \xi-m)^{2} }.</math> The functions <math>s_{\tau}(x)</math> and <math>S_\tau(\xi)</math> are thus each resembling a periodic function consisting of a series of equidistant Gaussian spikes <math>\tau^{-1} e^{-\pi \tau^{-2} ( x-n)^{2} }</math> and <math>\tau^{-1} e^{-\pi \tau^{-2} ( \xi-m)^{2} }</math> whose respective "heights" (pre-factors) are determined by slowly decreasing Gaussian envelope functions which drop to zero at infinity. Note that in the limit <math>\tau \rightarrow 0</math> each Gaussian spike becomes an infinitely sharp [[Dirac delta function|Dirac impulse]] centered respectively at <math>x=n</math> and <math>\xi=m</math> for each respective <math>n</math> and <math>m</math>, and hence also all pre-factors <math> e^{-\pi \tau^2 m^2}</math> in <math>S_{\tau}(\xi)</math> eventually become indistinguishable from <math> e^{-\pi \tau^2 \xi^2}</math>. Therefore the functions <math>s_{\tau}(x)</math> and their respective Fourier transforms <math>S_{\tau}(\xi)</math> converge to the same function and this limit function is a series of infinite equidistant Gaussian spikes, each spike being multiplied by the same pre-factor of one, i.e., the Dirac comb for unit period: :<math>\lim_{\tau \rightarrow 0} s_{\tau}(x) = \operatorname{\text{Ш}}({x}),</math> and <math>\lim_{\tau \rightarrow 0} S_{\tau}(\xi) = \operatorname{\text{Ш}}({\xi}).</math> Since <math>S_{\tau}=\mathcal{F}[s_{\tau}]</math>, we obtain in this limit the result to be demonstrated: :<math>\mathcal{F}[\operatorname{\text{Ш}}]= \operatorname{\text{Ш}}.</math> The corresponding result for period <math>T</math> can be found by exploiting the [[Fourier transform#Time scaling|scaling property]] of the [[Fourier transform]], :<math>\mathcal{F}[\operatorname{\text{Ш}}_T]= \frac{1}{T} \operatorname{\text{Ш}}_{\frac{1}{T}}.</math> Another manner to establish that the Dirac comb transforms into another Dirac comb starts by examining [[Fourier transform#Fourier transform for periodic functions|continuous Fourier transforms of periodic functions]] in general, and then specialises to the case of the Dirac comb. In order to also show that the specific rule depends on the [[Fourier transform#Other conventions|convention]] for the Fourier transform, this will be shown using angular frequency with <math>\omega=2\pi \xi :</math> for any periodic function <math>f(t)=f(t+T)</math> its Fourier transform :<math>\mathcal{F}\left[ f \right](\omega)=F(\omega) = \int_{-\infty}^{\infty} dt f(t) e^{-i\omega t} </math> obeys: :<math>F(\omega) (1 - e^{i \omega T}) = 0</math> because Fourier transforming <math>f(t)</math> and <math>f(t+T)</math> leads to <math>F(\omega)</math> and <math>F(\omega) e^{i \omega T}.</math> This equation implies that <math>F(\omega)=0</math> nearly everywhere with the only possible exceptions lying at <math>\omega= k \omega_0,</math> with <math>\omega_0=2\pi / T</math> and <math>k \in \mathbb{Z}.</math> When evaluating the Fourier transform at <math>F(k \omega_0)</math> the corresponding Fourier series expression times a corresponding delta function results. For the special case of the Fourier transform of the Dirac comb, the Fourier series integral over a single period covers only the Dirac function at the origin and thus gives <math>1/T</math> for each <math>k.</math> This can be summarised by interpreting the Dirac comb as a limit of the [[Dirichlet kernel#Relation to the periodic delta function|Dirichlet kernel]] such that, at the positions <math>\omega= k \omega_0,</math> all exponentials in the sum <math> \sum\nolimits_{m=-\infty}^{\infty} e^{\pm i \omega m T} </math> point into the same direction and add constructively. In other words, the [[Fourier transform#Fourier transform for periodic functions|continuous Fourier transform of periodic functions]] leads to :<math>F(\omega)= 2 \pi \sum_{k=-\infty}^{\infty} c_k \delta(\omega-k\omega_0) </math> with <math>\omega_0=2 \pi/T,</math> and :<math>c_k = \frac{1}{T} \int_{-T/2 }^{+T/2} dt f(t) e^{-i 2 \pi k t/T}.</math> The [[#Fourier series|Fourier series]] coefficients <math>c_k=1/T</math> for all <math>k</math> when <math>f \rightarrow \operatorname{\text{Ш}}_{T}</math>, i.e. :<math>\mathcal{F}\left[ \operatorname{\text{Ш}}_{T} \right](\omega) = \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega-k \frac{2 \pi}{T})</math> is another Dirac comb, but with period <math>2 \pi/T</math> in angular frequency domain (radian/s). As mentioned, the specific rule depends on the [[Fourier transform#Other conventions|convention]] for the used Fourier transform. Indeed, when using the [[Dirac delta function#Scaling and symmetry|scaling property]] of the Dirac delta function, the above may be re-expressed in ordinary frequency domain (Hz) and one obtains again: <math display="block">\operatorname{\text{Ш}}_{\ T}(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{T} \operatorname{\text{Ш}}_{\ \frac{1}{T}}(\xi) = \sum_{n=-\infty}^{\infty}\!\! e^{-i 2\pi \xi n T},</math> such that the unit period Dirac comb transforms to itself: <math display="block">\operatorname{\text{Ш}}\ \!(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{\text{Ш}}\ \!(\xi).</math> Finally, the Dirac comb is also an [[Fourier transform#Eigenfunctions|eigenfunction]] of the unitary continuous Fourier transform in [[Fourier transform#Other conventions|angular frequency]] space to the eigenvalue 1 when <math>T=\sqrt{2 \pi}</math> because for the unitary Fourier transform :<math>\mathcal{F}\left[ f \right](\omega)=F(\omega) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} dt f(t) e^{-i\omega t}, </math> the above may be re-expressed as <math display="block">\operatorname{\text{Ш}}_{\ T}(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{\sqrt{2\pi}}{T} \operatorname{\text{Ш}}_{\ \frac{2\pi}{T}}(\omega) = \frac{1}{\sqrt{2\pi}}\sum_{n=-\infty}^{\infty} \!\!e^{-i\omega nT}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)