Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirac delta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===As a measure=== One way to rigorously capture the notion of the Dirac delta function is to define a [[Measure (mathematics)|measure]], called [[Dirac measure]], which accepts a subset {{mvar|A}} of the real line {{math|'''R'''}} as an argument, and returns {{math|1=''δ''(''A'') = 1}} if {{math|0 ∈ ''A''}}, and {{math|1=''δ''(''A'') = 0}} otherwise.<ref name="Rudin 1966 loc=§1.20">{{harvnb|Rudin|1966|loc=§1.20}}</ref> If the delta function is conceptualized as modeling an idealized point mass at 0, then {{math|''δ''(''A'')}} represents the mass contained in the set {{mvar|A}}. One may then define the integral against {{mvar|δ}} as the integral of a function against this mass distribution. Formally, the [[Lebesgue integral]] provides the necessary analytic device. The Lebesgue integral with respect to the measure {{mvar|δ}} satisfies <math display="block">\int_{-\infty}^\infty f(x) \, \delta(dx) = f(0)</math> for all continuous compactly supported functions {{mvar|f}}. The measure {{mvar|δ}} is not [[absolutely continuous]] with respect to the [[Lebesgue measure]]—in fact, it is a [[singular measure]]. Consequently, the delta measure has no [[Radon–Nikodym derivative]] (with respect to Lebesgue measure)—no true function for which the property <math display="block">\int_{-\infty}^\infty f(x)\, \delta(x)\, dx = f(0)</math> holds.{{sfn|Hewitt|Stromberg|1963|loc=§19.61}} As a result, the latter notation is a convenient [[abuse of notation]], and not a standard ([[Riemann integral|Riemann]] or [[Lebesgue integral|Lebesgue]]) integral. As a [[probability measure]] on {{math|'''R'''}}, the delta measure is characterized by its [[cumulative distribution function]], which is the [[unit step function]].<ref>{{harvnb|Driggers|2003|p=2321}} See also {{harvnb|Bracewell|1986|loc=Chapter 5}} for a different interpretation. Other conventions for the assigning the value of the Heaviside function at zero exist, and some of these are not consistent with what follows.</ref> <math display="block">H(x) = \begin{cases} 1 & \text{if } x\ge 0\\ 0 & \text{if } x < 0. \end{cases}</math> This means that {{math|''H''(''x'')}} is the integral of the cumulative [[indicator function]] {{math|'''1'''<sub>(−∞, ''x'']</sub>}} with respect to the measure {{mvar|δ}}; to wit, <math display="block">H(x) = \int_{\mathbf{R}}\mathbf{1}_{(-\infty,x]}(t)\,\delta(dt) = \delta\!\left((-\infty,x]\right),</math> the latter being the measure of this interval. Thus in particular the integration of the delta function against a continuous function can be properly understood as a [[Riemann–Stieltjes integral]]:{{sfn|Hewitt|Stromberg|1963|loc=§9.19}} <math display="block">\int_{-\infty}^\infty f(x)\,\delta(dx) = \int_{-\infty}^\infty f(x) \,dH(x).</math> All higher [[moment (mathematics)|moments]] of {{mvar|δ}} are zero. In particular, [[characteristic function (probability theory)|characteristic function]] and [[moment generating function]] are both equal to one.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)