Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet character
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== The group of characters == There are three different cases because the groups <math>(\mathbb{Z}/m\mathbb{Z})^\times</math> have different structures depending on whether <math>m</math> is a power of 2, a power of an odd prime, or the product of prime powers.<ref>Except for the use of the modified Conrie labeling, this section follows Davenport pp. 1-3, 27-30</ref> === Powers of odd primes === If <math>q=p^k</math> is an odd number <math>(\mathbb{Z}/q\mathbb{Z})^\times</math> is cyclic of order <math>\phi(q)</math>; a generator is called a [[Primitive root modulo n|primitive root]] mod <math>q</math>.<ref>There is a primitive root mod <math>p</math> which is a primitive root mod <math>p^2</math> and all higher powers of <math>p</math>. See, e.g., Landau p. 106</ref> Let <math>g_q</math> be a primitive root and for <math>(a,q)=1</math> define the function <math>\nu_q(a)</math> (the '''index''' of <math>a</math>) by :<math>a\equiv g_q^{\nu_q(a)}\pmod {q},</math> :<math>0\le\nu_q<\phi(q).</math> For <math>(ab,q)=1,\;\;a \equiv b\pmod{q}</math> if and only if <math>\nu_q(a)=\nu_q(b).</math> Since :<math>\chi(a)=\chi(g_q^{\nu_q(a)})=\chi(g_q)^{\nu_q(a)},</math> <math>\chi</math> is determined by its value at <math>g_q.</math> Let <math>\omega_q= \zeta_{\phi(q)}</math> be a primitive <math>\phi(q)</math>-th root of unity. From property 7) above the possible values of <math> \chi(g_q)</math> are <math> \omega_q, \omega_q^2, ... \omega_q^{\phi(q)}=1.</math> These distinct values give rise to <math>\phi(q)</math> Dirichlet characters mod <math>q.</math> For <math>(r,q)=1</math> define <math>\chi_{q,r}(a)</math> as :<math> \chi_{q,r}(a)= \begin{cases} 0 &\text{if } \gcd(a,q)>1\\ \omega_q^{\nu_q(r)\nu_q(a)}&\text{if } \gcd(a,q)=1. \end{cases}</math> Then for <math>(rs,q)=1</math> and all <math>a</math> and <math>b</math> :<math>\chi_{q,r}(a)\chi_{q,r}(b)=\chi_{q,r}(ab),</math> showing that <math>\chi_{q,r}</math> is a character and :<math>\chi_{q,r}(a)\chi_{q,s}(a)=\chi_{q,rs}(a),</math> which gives an explicit isomorphism <math>\widehat{(\mathbb{Z}/p^k\mathbb{Z})^\times}\cong(\mathbb{Z}/p^k\mathbb{Z})^\times.</math> ==== Examples ''m'' = 3, 5, 7, 9 ==== 2 is a primitive root mod 3. (<math>\phi(3)=2</math>) :<math>2^1\equiv 2,\;2^2\equiv2^0\equiv 1\pmod{3},</math> so the values of <math>\nu_3</math> are :<math> \begin{array}{|c|c|c|c|c|c|c|} a & 1 & 2 \\ \hline \nu_3(a) & 0 & 1\\ \end{array} </math>. The nonzero values of the characters mod 3 are :<math> \begin{array}{|c|c|c|c|c|c|c|} & 1 & 2 \\ \hline \chi_{3,1} & 1 & 1 \\ \chi_{3,2} & 1 & -1 \\ \end{array} </math> 2 is a primitive root mod 5. (<math>\phi(5)=4</math>) :<math>2^1\equiv 2,\;2^2\equiv 4,\;2^3\equiv 3,\;2^4\equiv2^0\equiv 1\pmod{5},</math> so the values of <math>\nu_5</math> are :<math> \begin{array}{|c|c|c|c|c|c|c|} a & 1 & 2 & 3 & 4 \\ \hline \nu_5(a) & 0 & 1 & 3 & 2 \\ \end{array} </math>. The nonzero values of the characters mod 5 are :<math> \begin{array}{|c|c|c|c|c|c|c|} & 1 & 2 & 3 & 4 \\ \hline \chi_{5,1} & 1 & 1 & 1 & 1 \\ \chi_{5,2} & 1 & i & -i & -1\\ \chi_{5,3} & 1 & -i & i & -1\\ \chi_{5,4} & 1 & -1 & -1 & 1\\ \end{array} </math> 3 is a primitive root mod 7. (<math>\phi(7)=6</math>) :<math>3^1\equiv 3,\;3^2\equiv 2,\;3^3\equiv 6,\;3^4\equiv 4,\;3^5\equiv 5,\;3^6\equiv3^0\equiv 1\pmod{7},</math> so the values of <math>\nu_7</math> are :<math> \begin{array}{|c|c|c|c|c|c|c|} a & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \nu_7(a) & 0 & 2 & 1 & 4 & 5 & 3 \\ \end{array} </math>. The nonzero values of the characters mod 7 are (<math>\omega=\zeta_6, \;\;\omega^3=-1</math>) :<math> \begin{array}{|c|c|c|c|c|c|c|} & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \chi_{7,1} & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi_{7,2} & 1 & -\omega & \omega^2 & \omega^2 & -\omega & 1 \\ \chi_{7,3} & 1 & \omega^2 & \omega & -\omega & -\omega^2 & -1 \\ \chi_{7,4} & 1 & \omega^2 & -\omega & -\omega & \omega^2 & 1 \\ \chi_{7,5} & 1 & -\omega & -\omega^2 & \omega^2 & \omega & -1 \\ \chi_{7,6} & 1 & 1 & -1 & 1 & -1 & -1 \\ \end{array} </math>. 2 is a primitive root mod 9. (<math>\phi(9)=6</math>) :<math>2^1\equiv 2,\;2^2\equiv 4,\;2^3\equiv 8,\;2^4\equiv 7,\;2^5\equiv 5,\;2^6\equiv2^0\equiv 1\pmod{9},</math> so the values of <math>\nu_9</math> are :<math> \begin{array}{|c|c|c|c|c|c|c|} a & 1 & 2 &4 & 5&7&8 \\ \hline \nu_9(a) & 0 & 1 & 2 & 5&4&3 \\ \end{array} </math>. The nonzero values of the characters mod 9 are (<math>\omega=\zeta_6, \;\;\omega^3=-1</math>) :<math> \begin{array}{|c|c|c|c|c|c|c|} & 1 & 2 & 4 & 5 &7 & 8 \\ \hline \chi_{9,1} & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi_{9,2} & 1 & \omega & \omega^2 & -\omega^2 & -\omega & -1 \\ \chi_{9,4} & 1 & \omega^2 & -\omega & -\omega & \omega^2 & 1 \\ \chi_{9,5} & 1 & -\omega^2 & -\omega & \omega & \omega^2 & -1 \\ \chi_{9,7} & 1 & -\omega & \omega^2 & \omega^2 & -\omega & 1 \\ \chi_{9,8} & 1 & -1 & 1 & -1 & 1 & -1 \\ \end{array} </math>. === Powers of 2 === <math>(\mathbb{Z}/2\mathbb{Z})^\times</math> is the trivial group with one element. <math>(\mathbb{Z}/4\mathbb{Z})^\times</math> is cyclic of order 2. For 8, 16, and higher powers of 2, there is no primitive root; the powers of 5 are the units <math>\equiv 1\pmod{4}</math> and their negatives are the units <math>\equiv 3\pmod{4}.</math><ref>Landau pp. 107-108</ref> For example :<math>5^1\equiv 5,\;5^2\equiv5^0\equiv 1\pmod{8}</math> :<math>5^1\equiv 5,\;5^2\equiv 9,\;5^3\equiv 13,\;5^4\equiv5^0\equiv 1\pmod{16}</math> :<math>5^1\equiv 5,\;5^2\equiv 25,\;5^3\equiv 29,\;5^4\equiv 17,\;5^5\equiv 21,\;5^6\equiv 9,\;5^7\equiv 13,\;5^8\equiv5^0\equiv 1\pmod{32}.</math> Let <math>q=2^k, \;\;k\ge3</math>; then <math>(\mathbb{Z}/q\mathbb{Z})^\times</math> is the direct product of a cyclic group of order 2 (generated by β1) and a cyclic group of order <math>\frac{\phi(q)}{2}</math> (generated by 5). For odd numbers <math>a</math> define the functions <math>\nu_0</math> and <math>\nu_q</math> by :<math>a\equiv(-1)^{\nu_0(a)}5^{\nu_q(a)}\pmod{q},</math> :<math>0\le\nu_0<2,\;\;0\le\nu_q<\frac{\phi(q)}{2}.</math> For odd <math>a</math> and <math>b, \;\;a\equiv b\pmod{q}</math> if and only if <math>\nu_0(a)=\nu_0(b)</math> and <math>\nu_q(a)=\nu_q(b).</math> For odd <math>a</math> the value of <math> \chi(a)</math> is determined by the values of <math> \chi(-1)</math> and <math>\chi(5).</math> Let <math>\omega_q = \zeta_{\frac{\phi(q)}{2}}</math> be a primitive <math>\frac{\phi(q)}{2}</math>-th root of unity. The possible values of <math> \chi((-1)^{\nu_0(a)}5^{\nu_q(a)})</math> are <math> \pm\omega_q, \pm\omega_q^2, ... \pm\omega_q^{\frac{\phi(q)}{2}}=\pm1.</math> These distinct values give rise to <math>\phi(q)</math> Dirichlet characters mod <math>q.</math> For odd <math>r </math> define <math>\chi_{q,r}(a)</math> by :<math> \chi_{q,r}(a)= \begin{cases} 0 &\text{if } a\text{ is even}\\ (-1)^{\nu_0(r)\nu_0(a)}\omega_q^{\nu_q(r)\nu_q(a)}&\text{if } a \text{ is odd}. \end{cases}</math> Then for odd <math>r</math> and <math>s</math> and all <math>a</math> and <math>b</math> :<math>\chi_{q,r}(a)\chi_{q,r}(b)=\chi_{q,r}(ab)</math> showing that <math>\chi_{q,r}</math> is a character and :<math>\chi_{q,r}(a)\chi_{q,s}(a)=\chi_{q,rs}(a)</math> showing that <math>\widehat{(\mathbb{Z}/2^{k}\mathbb{Z})^\times}\cong (\mathbb{Z}/2^{k}\mathbb{Z})^\times.</math> ==== Examples ''m'' = 2, 4, 8, 16 ==== The only character mod 2 is the principal character <math>\chi_{2,1}</math>. β1 is a primitive root mod 4 (<math>\phi(4)=2</math>) :<math> \begin{array}{|||} a & 1 & 3 \\ \hline \nu_0(a) & 0 & 1 \\ \end{array} </math> The nonzero values of the characters mod 4 are :<math> \begin{array}{|c|c|c|c|c|c|c|} & 1 & 3 \\ \hline \chi_{4,1} & 1 & 1 \\ \chi_{4,3} & 1 & -1 \\ \end{array} </math> β1 is and 5 generate the units mod 8 (<math>\phi(8)=4</math>) :<math> \begin{array}{|||} a & 1 & 3 & 5 & 7 \\ \hline \nu_0(a) & 0 & 1 & 0 & 1 \\ \nu_8(a) & 0 & 1 & 1 & 0 \\ \end{array} </math>. The nonzero values of the characters mod 8 are :<math> \begin{array}{|c|c|c|c|c|c|c|} & 1 & 3 & 5 & 7 \\ \hline \chi_{8,1} & 1 & 1 & 1 & 1 \\ \chi_{8,3} & 1 & 1 & -1 & -1 \\ \chi_{8,5} & 1 & -1 & -1 & 1 \\ \chi_{8,7} & 1 & -1 & 1 & -1 \\ \end{array} </math> β1 and 5 generate the units mod 16 (<math>\phi(16)=8</math>) :<math> \begin{array}{|||} a & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\ \hline \nu_0(a) & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ \nu_{16}(a) & 0 & 3 & 1 & 2 & 2 & 1 & 3 & 0 \\ \end{array} </math>. The nonzero values of the characters mod 16 are :<math> \begin{array}{|||} & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\ \hline \chi_{16,1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi_{16,3} & 1 & -i & -i & 1 & -1 & i & i & -1 \\ \chi_{16,5} & 1 & -i & i & -1 & -1 & i & -i & 1 \\ \chi_{16,7} & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ \chi_{16,9} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ \chi_{16,11} & 1 & i & i & 1 & -1 & -i & -i & -1 \\ \chi_{16,13} & 1 & i & -i & -1 & -1 & -i & i & 1 \\ \chi_{16,15} & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ \end{array} </math>. === Products of prime powers === Let <math>m=p_1^{m_1}p_2^{m_2} \cdots p_k^{m_k} = q_1q_2 \cdots q_k</math> where <math> p_1<p_2< \dots < p_k</math> be the factorization of <math>m</math> into prime powers. The group of units mod <math>m</math> is isomorphic to the direct product of the groups mod the <math>q_i</math>:<ref>See [[Multiplicative group of integers modulo n#General composite numbers|group of units]] for details</ref> :<math>(\mathbb{Z}/m\mathbb{Z})^\times \cong(\mathbb{Z}/q_1\mathbb{Z})^\times \times(\mathbb{Z}/q_2\mathbb{Z})^\times \times \dots \times(\mathbb{Z}/q_k\mathbb{Z})^\times .</math> This means that 1) there is a one-to-one correspondence between <math>a\in (\mathbb{Z}/m\mathbb{Z})^\times</math> and <math>k</math>-tuples <math>(a_1, a_2,\dots, a_k)</math> where <math>a_i\in(\mathbb{Z}/q_i\mathbb{Z})^\times </math> and 2) multiplication mod <math>m</math> corresponds to coordinate-wise multiplication of <math>k</math>-tuples: :<math>ab\equiv c\pmod{m}</math> corresponds to :<math>(a_1,a_2,\dots,a_k)\times(b_1,b_2,\dots,b_k)=(c_1,c_2,\dots,c_k)</math> where <math>c_i\equiv a_ib_i\pmod{q_i}.</math> The [[Chinese remainder theorem]] (CRT) implies that the <math>a_i</math> are simply <math>a_i\equiv a\pmod{q_i}.</math> There are subgroups <math> G_i<(\mathbb{Z}/m\mathbb{Z})^\times</math> such that <ref>To construct the <math>G_i, </math> for each <math> a\in (\mathbb{Z}/q_i\mathbb{Z})^\times </math> use the CRT to find <math>a_i\in (\mathbb{Z}/m\mathbb{Z})^\times</math> where :<math>a_i\equiv \begin{cases} a &\mod q_i\\ 1&\mod q_j, j\ne i. \end{cases} </math> </ref> :<math>G_i\cong(\mathbb{Z}/q_i\mathbb{Z})^\times </math> and :<math>G_i\equiv \begin{cases} (\mathbb{Z}/q_i\mathbb{Z})^\times &\mod q_i\\ \{1\}&\mod q_j, j\ne i. \end{cases} </math> Then <math>(\mathbb{Z}/m\mathbb{Z})^\times \cong G_1\times G_2\times...\times G_k</math> and every <math>a\in (\mathbb{Z}/m\mathbb{Z})^\times</math> corresponds to a <math>k</math>-tuple <math>(a_1, a_2,...a_k)</math> where <math>a_i\in G_i </math> and <math>a_i\equiv a\pmod{q_i}. </math> Every <math>a\in (\mathbb{Z}/m\mathbb{Z})^\times</math> can be uniquely factored as <math>a =a_1a_2...a_k.</math> <ref>Assume <math>a</math> corresponds to <math>(a_1,a_2, ...)</math>. By construction <math>a_1</math> corresponds to <math>(a_1,1,1,...)</math>, <math>a_2</math> to <math>(1,a_2,1,...)</math> etc. whose coordinate-wise product is <math>(a_1,a_2, ...).</math></ref> <ref>For example let <math>m=40, q_1=8, q_2=5.</math> Then <math>G_1=\{1,11,21,31\}</math> and <math>G_2=\{1,9,17,33\}.</math> The factorization of the elements of <math>(\mathbb{Z}/40\mathbb{Z})^\times</math> is :<math> \begin{array}{|c|c|c|c|c|c|c|} & 1 & 9 & 17 & 33 \\ \hline 1 & 1 & 9 & 17 & 33 \\ 11 & 11 & 19 & 27 & 3 \\ 21 & 21 & 29 & 37 & 13 \\ 31 & 31 & 39 & 7 & 23 \\ \end{array} </math> </ref> If <math>\chi_{m,\_}</math> is a character mod <math>m,</math> on the subgroup <math>G_i</math> it must be identical to some <math>\chi_{q_i,\_}</math> mod <math>q_i</math> Then :<math>\chi_{m,\_}(a)=\chi_{m,\_}(a_1a_2...)=\chi_{m,\_}(a_1)\chi_{m,\_}(a_2)...=\chi_{q_1,\_}(a_1)\chi_{q_2,\_}(a_2)...,</math> showing that every character mod <math> m</math> is the product of characters mod the <math>q_i</math>. For <math>(t,m)=1</math> define<ref>See [https://lmfdb.org/knowledge/show/character.dirichlet.conrey Conrey labeling].</ref> :<math> \chi_{m,t}=\chi_{q_1,t}\chi_{q_2,t}...</math> Then for <math>(rs,m)=1</math> and all <math>a</math> and <math>b</math><ref>Because these formulas are true for each factor.</ref> :<math>\chi_{m,r}(a)\chi_{m,r}(b)=\chi_{m,r}(ab),</math> showing that <math>\chi_{m,r}</math> is a character and :<math>\chi_{m,r}(a)\chi_{m,s}(a)=\chi_{m,rs}(a),</math> showing an isomorphism <math>\widehat{(\mathbb{Z}/m\mathbb{Z})^\times}\cong(\mathbb{Z}/m\mathbb{Z})^\times.</math> ==== Examples ''m'' = 15, 24, 40 ==== <math>(\mathbb{Z}/15\mathbb{Z})^\times\cong(\mathbb{Z}/3\mathbb{Z})^\times\times(\mathbb{Z}/5\mathbb{Z})^\times.</math> The factorization of the characters mod 15 is :<math> \begin{array}{|c|c|c|c|c|c|c|} & \chi_{5,1} & \chi_{5,2} & \chi_{5,3} & \chi_{5,4} \\ \hline \chi_{3,1} & \chi_{15,1} & \chi_{15,7} & \chi_{15,13} & \chi_{15,4} \\ \chi_{3,2} & \chi_{15,11} & \chi_{15,2} & \chi_{15,8} & \chi_{15,14} \\ \end{array} </math> The nonzero values of the characters mod 15 are :<math> \begin{array}{|||} & 1 & 2 & 4 & 7 & 8 & 11 & 13 & 14 \\ \hline \chi_{15,1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi_{15,2} & 1 & -i & -1 & i & i & -1 & -i & 1 \\ \chi_{15,4} & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ \chi_{15,7} & 1 & i & -1 & i & -i & 1 & -i & -1 \\ \chi_{15,8} & 1 & i & -1 & -i & -i & -1 & i & 1 \\ \chi_{15,11} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 \\ \chi_{15,13} & 1 & -i & -1 & -i & i & 1 & i & -1 \\ \chi_{15,14} & 1 & 1 & 1 & -1 & 1 & -1 & -1 & -1 \\ \end{array} </math>. <math>(\mathbb{Z}/24\mathbb{Z})^\times\cong(\mathbb{Z}/8\mathbb{Z})^\times\times(\mathbb{Z}/3\mathbb{Z})^\times.</math> The factorization of the characters mod 24 is :<math> \begin{array}{|c|c|c|c|c|c|c|} & \chi_{8,1} & \chi_{8,3} & \chi_{8,5} & \chi_{8,7} \\ \hline \chi_{3,1} & \chi_{24,1} & \chi_{24,19} & \chi_{24,13} & \chi_{24,7} \\ \chi_{3,2} & \chi_{24,17} & \chi_{24,11} & \chi_{24,5} & \chi_{24,23} \\ \end{array} </math> The nonzero values of the characters mod 24 are :<math> \begin{array}{|||} & 1 & 5 & 7 & 11 & 13 & 17 & 19 & 23 \\ \hline \chi_{24,1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi_{24,5} & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ \chi_{24,7} & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ \chi_{24,11} & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ \chi_{24,13} & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ \chi_{24,17} & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ \chi_{24,19} & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\ \chi_{24,23} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ \end{array} </math>. <math>(\mathbb{Z}/40\mathbb{Z})^\times\cong(\mathbb{Z}/8\mathbb{Z})^\times\times(\mathbb{Z}/5\mathbb{Z})^\times.</math> The factorization of the characters mod 40 is :<math> \begin{array}{|c|c|c|c|c|c|c|} & \chi_{8,1} & \chi_{8,3} & \chi_{8,5} & \chi_{8,7} \\ \hline \chi_{5,1} & \chi_{40,1} & \chi_{40,11} & \chi_{40,21} & \chi_{40,31} \\ \chi_{5,2} & \chi_{40,17} & \chi_{40,27} & \chi_{40,37} & \chi_{40,7} \\ \chi_{5,3} & \chi_{40,33} & \chi_{40,3} & \chi_{40,13} & \chi_{40,23} \\ \chi_{5,4} & \chi_{40,9} & \chi_{40,19} & \chi_{40,29} & \chi_{40,39} \\ \end{array} </math> The nonzero values of the characters mod 40 are :<math> \begin{array}{|||} & 1 & 3 & 7 & 9 & 11 & 13 & 17 & 19 & 21 & 23 & 27 & 29 & 31 & 33 & 37 & 39 \\ \hline \chi_{40,1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi_{40,3} & 1 & i & i & -1 & 1 & -i & -i & -1 & -1 & -i & -i & 1 & -1 & i & i & 1 \\ \chi_{40,7} & 1 & i & -i & -1 & -1 & -i & i & 1 & 1 & i & -i & -1 & -1 & -i & i & 1 \\ \chi_{40,9} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ \chi_{40,11} & 1 & 1 & -1 & 1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & -1 \\ \chi_{40,13} & 1 & -i & -i & -1 & -1 & -i & -i & 1 & -1 & i & i & 1 & 1 & i & i & -1 \\ \chi_{40,17} & 1 & -i & i & -1 & 1 & -i & i & -1 & 1 & -i & i & -1 & 1 & -i & i & -1 \\ \chi_{40,19} & 1 & -1 & 1 & 1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & -1 & -1 & 1 & -1 \\ \chi_{40,21} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 \\ \chi_{40,23} & 1 & -i & i & -1 & -1 & i & -i & 1 & 1 & -i & i & -1 & -1 & i & -i & 1 \\ \chi_{40,27} & 1 & -i & -i & -1 & 1 & i & i & -1 & -1 & i & i & 1 & -1 & -i & -i & 1 \\ \chi_{40,29} & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 \\ \chi_{40,31} & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\ \chi_{40,33} & 1 & i & -i & -1 & 1 & i & -i & -1 & 1 & i & -i & -1 & 1 & i & -i & -1 \\ \chi_{40,37} & 1 & i & i & -1 & -1 & i & i & 1 & -1 & -i & -i & 1 & 1 & -i & -i & -1 \\ \chi_{40,39} & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ \end{array} </math>. === Summary === Let <math>m=p_1^{k_1}p_2^{k_2}\cdots = q_1q_2 \cdots</math>, <math>p_1<p_2< \dots </math> be the factorization of <math>m</math> and assume <math>(rs,m)=1.</math> There are <math>\phi(m)</math> Dirichlet characters mod <math>m.</math> They are denoted by <math>\chi_{m,r},</math> where <math>\chi_{m,r}=\chi_{m,s}</math> is equivalent to <math>r\equiv s\pmod{m}.</math> The identity <math>\chi_{m,r}(a)\chi_{m,s}(a)=\chi_{m,rs}(a)\;</math> is an isomorphism <math>\widehat{(\mathbb{Z}/m\mathbb{Z})^\times}\cong(\mathbb{Z}/m\mathbb{Z})^\times.</math><ref>This is true for all finite abelian groups: <math>A\cong\hat{A}</math>; See Ireland & Rosen pp. 253-254</ref> Each character mod <math>m</math> has a unique factorization as the product of characters mod the prime powers dividing <math>m</math>: :<math>\chi_{m,r}=\chi_{q_1,r}\chi_{q_2,r}...</math> If <math>m=m_1m_2, (m_1,m_2)=1</math> the product <math>\chi_{m_1,r}\chi_{m_2,s}</math> is a character <math>\chi_{m,t}</math> where <math>t</math> is given by <math>t\equiv r\pmod{m_1}</math> and <math>t\equiv s\pmod{m_2}.</math> Also,<ref>because the formulas for <math>\chi</math> mod prime powers are symmetric in <math>r</math> and <math>s</math> and the formula for products preserves this symmetry. See Davenport, p. 29.</ref><ref>This is the same thing as saying that the n-th column and the n-th row in the tables of nonzero values are the same.</ref> <math> \chi_{m,r}(s)=\chi_{m,s}(r)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)