Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet eta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Numerical algorithms== Most of the [[series acceleration]] techniques developed for [[alternating series]] can be profitably applied to the evaluation of the eta function. One particularly simple, yet reasonable method is to apply [[Binomial transform#Euler transform|Euler's transformation of alternating series]], to obtain <math display="block">\eta(s)=\sum_{n=0}^\infty \frac{1}{2^{n+1}} \sum_{k=0}^n (-1)^{k} {n \choose k} \frac {1}{(k+1)^s}. </math> Note that the second, inside summation is a [[forward difference]]. === Borwein's method === [[Peter Borwein]] used approximations involving [[Chebyshev polynomials]] to produce a method for efficient evaluation of the eta function.<ref>{{cite book | first=Peter | last=Borwein | author-link=Peter Borwein | url=http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf | chapter=An efficient algorithm for the Riemann zeta function | series=Conference Proceedings, Canadian Mathematical Society | year=2000 | title=Constructive, Experimental, and Nonlinear Analysis | volume=27 | pages=29–34 | isbn=978-0-8218-2167-1 | editor-first=Michel A. | editor-last=Théra | publisher=[[American Mathematical Society]], on behalf of the [[Canadian Mathematical Society]] | location=Providence, RI | access-date=2008-09-20 | archive-date=2011-07-26 | archive-url=https://web.archive.org/web/20110726090927/http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf | url-status=dead }}</ref> If <math display="block">d_k = n\sum_{\ell=0}^k \frac{(n+\ell-1)!4^\ell}{(n-\ell)!(2\ell)!}</math> then <math display="block">\eta(s) = -\frac{1}{d_n} \sum_{k=0}^{n-1}\frac{(-1)^k(d_k-d_n)}{(k+1)^s}+\gamma_n(s),</math> where for <math>\Re(s) \ge \frac{1}{2} </math> the error term {{math|''γ''<sub>''n''</sub>}} is bounded by <math display="block">|\gamma_n(s)| \le \frac{3}{(3+\sqrt{8})^n} (1+2|\Im(s)|)\exp\left(\frac{\pi}{2}|\Im(s)|\right).</math> The factor of <math>3+\sqrt{8}\approx 5.8</math> in the error bound indicates that the Borwein series converges quite rapidly as ''n'' increases.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)