Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet integral
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Differentiation under the integral sign (Feynman's trick)=== First rewrite the integral as a function of the additional variable <math>s,</math> namely, the Laplace transform of <math>\frac{\sin t} t.</math> So let <math display="block">f(s)=\int_0^\infty e^{-st} \frac{\sin t} t \, dt.</math> In order to evaluate the Dirichlet integral, we need to determine <math>f(0).</math> The continuity of <math>f</math> can be justified by applying the [[dominated convergence theorem]] after integration by parts. Differentiate with respect to <math>s>0</math> and apply the [[Leibniz integral rule|Leibniz rule for differentiating under the integral sign]] to obtain <math display="block"> \begin{align} \frac{df}{ds} & = \frac{d}{ds}\int_0^\infty e^{-st} \frac{\sin t}{t} \, dt = \int_0^\infty \frac{\partial}{\partial s}e^{-st}\frac{\sin t} t \, dt \\[6pt] & = -\int_0^\infty e^{-st} \sin t \, dt. \end{align} </math> Now, using Euler's formula <math>e^{it} = \cos t + i\sin t,</math> one can express the sine function in terms of complex exponentials: <math display="block"> \sin t = \frac{1}{2i} \left( e^{i t} - e^{-it}\right). </math> Therefore, <math display="block"> \begin{align} \frac{df}{ds} & = -\int_0^\infty e^{-st} \sin t \, dt = -\int_{0}^{\infty} e^{-st} \frac{e^{it} - e^{-it}}{2i} dt \\[6pt] &= -\frac{1}{2i} \int_{0}^{\infty} \left[ e^{-t(s-i)} - e^{-t(s + i)} \right] dt \\[6pt] &= -\frac{1}{2i} \left [ \frac{-1}{s - i} e^{-t (s - i)} - \frac{-1}{s + i} e^{-t (s + i)}\right]_0^{\infty} \\[6pt] &= -\frac{1}{2i} \left[ 0 - \left( \frac{-1}{s - i} + \frac{1}{s + i} \right) \right] = -\frac{1}{2i} \left( \frac{1}{s - i} - \frac{1}{s + i} \right) \\[6pt] &= -\frac{1}{2i} \left( \frac{s + i - (s -i)}{s^2 + 1} \right) = -\frac{1}{s^2 + 1}. \end{align} </math> Integrating with respect to <math>s</math> gives <math display="block">f(s) = \int \frac{-ds}{s^2 + 1} = A - \arctan s,</math> where <math>A</math> is a constant of integration to be determined. Since <math>\lim_{s \to \infty} f(s) = 0,</math> <math>A = \lim_{s \to \infty} \arctan s = \frac{\pi}{2},</math> using the principal value. This means that for <math>s > 0</math> <math display="block">f(s) = \frac{\pi}{2} - \arctan s.</math> Finally, by continuity at <math>s = 0,</math> we have <math>f(0) = \frac{\pi}{2} - \arctan(0) = \frac{\pi}{2},</math> as before.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)