Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dissipative system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Quantum dissipative systems == {{main|Quantum dissipation}} As [[quantum mechanics]], and any classical [[dynamical system]], relies heavily on [[Hamiltonian mechanics]] for which [[Time reversibility|time is reversible]], these approximations are not intrinsically able to describe dissipative systems. It has been proposed that in principle, one can couple weakly the system – say, an oscillator – to a bath, i.e., an assembly of many oscillators in thermal equilibrium with a broad band spectrum, and trace (average) over the bath. This yields a [[master equation]] which is a special case of a more general setting called the [[Lindblad equation]] that is the quantum equivalent of the classical [[Liouville's theorem (Hamiltonian)|Liouville equation]]. The well-known form of this equation and its quantum counterpart takes time as a reversible variable over which to integrate, but the very foundations of dissipative structures imposes an [[H-theorem|irreversible]] and constructive role for time. Recent research has seen the quantum extension<ref name="Valente">{{cite journal|last1=Valente|first1=Daniel|last2=Brito|first2=Frederico|last3=Werlang|first3=Thiago|title=Quantum dissipative adaptation|journal=Communications Physics|date=19 January 2021|volume=4|issue=11|page=11 |doi=10.1038/s42005-020-00512-0 |arxiv=2111.08605 |bibcode=2021CmPhy...4...11V |doi-access=free}}</ref> of [[Jeremy England]]'s theory of dissipative adaptation<ref name="England"/> (which generalizes Prigogine's ideas of dissipative structures to far-from-equilibrium statistical mechanics, as stated above).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)