Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dynamic mechanical analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Derivation of dynamic moduli==== Shear stress <math>\sigma(t)=\int_{-\infty}^t G(t-t') \dot{\gamma}(t')dt'</math> of a finite element in one direction can be expressed with relaxation modulus <math>G(t-t')</math> and strain rate, integrated over all past times <math>t'</math> up to the current time <math>t</math>. With strain rate <math> \dot{\gamma(t)}=\omega \cdot \gamma_0 \cdot \cos(\omega t)</math>and substitution <math>\xi(t')=t-t'=s </math> one obtains <math>\sigma(t)=\int_{\xi(-\infty)=t-(-\infty)}^{\xi(t)=t-t} G(s) \omega \gamma_0 \cdot \cos(\omega(t-s))(-ds)=\gamma_0\int_0^{\infty} \omega G(s)\cos(\omega(t-s))ds</math>. Application of the trigonometric addition theorem <math>\cos(x \pm y)=\cos(x)\cos(y) \mp \sin(x)\sin(y)</math> lead to the expression :<math> \frac{\sigma(t)}{\gamma(t)}=\underbrace{[\omega\int_o^{\infty}G(s)\sin(\omega s) ds]}_{\text{shear storage modulus }G'} \sin(\omega t)+\underbrace{[\omega\int_o^{\infty}G(s)\cos(\omega s) ds]}_{\text{shear loss modulus }G''} \cos(\omega t). \,</math> with converging integrals, if <math>G(s) \rightarrow 0</math> for <math>s \rightarrow \infty </math>, which depend on frequency but not of time. Extension of <math>\sigma(t)=\sigma_0 \cdot \sin (\omega \cdot t + \Delta \varphi) </math> with trigonometric identity <math> \sin(x \pm y)=\sin(x)\cdot \cos(y) \pm \cos(x)\cdot \sin(y)</math> lead to :<math> \frac{\sigma(t)}{\gamma(t)}=\underbrace{\frac{\sigma_0}{\gamma_0} \cdot \cos(\Delta \varphi)}_{G'}\cdot \sin (\omega \cdot t)+ \underbrace{\frac{\sigma_0}{\gamma_0} \cdot \sin(\Delta \varphi)}_{G''} \cdot \cos (\omega \cdot t) \,</math>. Comparison of the two <math>\frac{\sigma(t)}{\gamma(t)}</math> equations lead to the definition of <math>G'</math> and <math>G''</math>.<ref name="Ferry">{{cite book|last=Ferry|first=J.D.|author2 = Myers, Henry S |year=1961|title=Viscoelastic properties of polymers|publisher=The Electrochemical Society |volume=108 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)