Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Electrical element
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Two-port elements== All the above are two-terminal, or [[one-port]], elements except the dependent sources. Two lossless, passive, linear [[two-port network|two-port]] elements are typically introduced into network analysis. Their constitutive relations in matrix notation are; ;Transformer: : <math> \begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} 0 & n \\ -n & 0 \end{bmatrix}\begin{bmatrix} I_1 \\ V_2 \end{bmatrix}</math> ;Gyrator: : <math> \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 0 & -r \\ r & 0 \end{bmatrix}\begin{bmatrix} I_1 \\ I_2 \end{bmatrix}</math> The transformer maps a voltage at one port to a voltage at the other in a ratio of ''n''. The current between the same two ports is mapped by 1/''n''. On the other hand, the [[gyrator]] maps a voltage at one port to a current at the other. Likewise, currents are mapped to voltages. The quantity ''r'' in the matrix is in units of resistance. The gyrator is a necessary element in analysis because it is not [[Reciprocity (electrical networks)|reciprocal]]. Networks built from just the basic linear elements are necessarily reciprocal, so they cannot be used by themselves to represent a non-reciprocal system. It is not essential, however, to have both the transformer and gyrator. Two gyrators in cascade are equivalent to a transformer, but the transformer is usually retained for convenience. The introduction of the gyrator also makes either capacitance or inductance non-essential since a gyrator terminated with one of these at port 2 will be equivalent to the other at port 1. However, transformer, capacitance, and inductance are normally retained in analysis because they are the ideal properties of the basic physical components [[transformer]], [[inductor]], and [[capacitor]], whereas a [[Gyrator#Implementation: a simulated inductor|practical gyrator]] must be constructed as an active circuit.<ref>Wadhwa, C.L., ''Network analysis and synthesis'', pp.17β22, New Age International, {{ISBN|81-224-1753-1}}.</ref><ref>Herbert J. Carlin, Pier Paolo Civalleri, ''Wideband circuit design'', pp.171β172, CRC Press, 1998 {{ISBN|0-8493-7897-4}}.</ref><ref>Vjekoslav DamiΔ, John Montgomery, ''Mechatronics by bond graphs: an object-oriented approach to modelling and simulation'', pp.32β33, Springer, 2003 {{ISBN|3-540-42375-3}}.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)