Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Elias gamma coding
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generalizations ==<!-- This section is linked from [[Elias delta coding]] --> {{See also|Variable-length quantity#Zigzag encoding}} Gamma coding does not code zero or negative integers. One way of handling zero is to add 1 before coding and then subtract 1 after decoding. Another way is to prefix each nonzero code with a 1 and then code zero as a single 0. One way to code all integers is to set up a [[bijection]], mapping integers (0, β1, 1, β2, 2, β3, 3, ...) to (1, 2, 3, 4, 5, 6, 7, ...) before coding. In software, this is most easily done by mapping non-negative inputs to odd outputs, and negative inputs to even outputs, so the least-significant bit becomes an inverted [[sign bit]]:<br/> <math>\begin{cases} x \mapsto 2x+1 & \mathrm{when~} x \geq 0 \\ x \mapsto -2x & \mathrm{when~} x < 0 \\ \end{cases}</math> [[Exponential-Golomb coding]] generalizes the gamma code to integers with a "flatter" power-law distribution, just as [[Golomb coding]] generalizes the unary code. It involves dividing the number by a positive divisor, commonly a power of 2, writing the gamma code for one more than the quotient, and writing out the remainder in an ordinary binary code.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)