Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Entire function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Examples=== Here are some examples of functions of various orders: ====Order ''Ο''==== For arbitrary positive numbers <math>\rho</math> and <math>\sigma</math> one can construct an example of an entire function of order <math>\rho</math> and type <math>\sigma</math> using: <math display="block">f(z)=\sum_{n=1}^\infty \left (\frac{e\rho\sigma}{n} \right )^{\frac{n}{\rho}} z^n</math> ====Order 0==== * Non-zero polynomials *<math>\sum_{n=0}^\infty 2^{-n^2} z^n</math> ====Order 1/4==== <math display="block">f(\sqrt[4]z)</math> where <math display="block">f(u)=\cos(u)+\cosh(u)</math> ====Order 1/3==== <math display="block">f(\sqrt[3]z)</math> where <math display="block">f(u)=e^u+e^{\omega u}+e^{\omega^2 u} = e^u+2e^{-\frac{u}{2}}\cos \left (\frac{\sqrt 3u}{2} \right ), \quad \text{with } \omega \text{ a complex cube root of 1}.</math> ====Order 1/2==== <math display="block">\cos \left (a\sqrt z \right )</math> with <math>a\neq 0</math> (for which the type is given by <math>\sigma=|a|</math>) ====Order 1==== *<math>\exp(az)</math> with <math>a\neq 0</math> (<math>\sigma=|a|</math>) *<math>\sin(z)</math> *<math>\cosh(z)</math> *the [[Bessel function]]s <math>J_n(z)</math> and spherical Bessel functions <math>j_n(z)</math> for integer values of <math>n</math><ref>See asymptotic expansion in Abramowitz and Stegun, [https://personal.math.ubc.ca/~cbm/aands/page_377.htm p. 377, 9.7.1].</ref> *the [[reciprocal gamma function]] <math>1/\Gamma(z)</math> (<math>\sigma</math> is infinite) *<math>\sum_{n=2}^\infty \frac{z^n}{(n\ln n)^n}. \quad (\sigma=0)</math> ====Order 3/2==== * [[Airy function]] <math>Ai(z)</math> ====Order 2==== *<math>\exp(az^2)</math> with <math>a\neq 0</math> (<math>\sigma=|a|</math>) *The [[Barnes G-function]] (<math>\sigma</math> is infinite). ====Order infinity==== *<math>\exp(\exp(z))</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)