Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Erlangen program
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Influence on later work== The long-term effects of the Erlangen program can be seen all over pure mathematics (see tacit use at [[congruence (geometry)]], for example); and the idea of transformations and of synthesis using groups of [[symmetry (physics)|symmetry]] has become standard in [[physics]]. When [[topology]] is routinely described in terms of properties [[invariant (mathematics)|invariant]] under [[homeomorphism]], one can see the underlying idea in operation. The groups involved will be infinite-dimensional in almost all cases – and not [[Lie group]]s – but the philosophy is the same. Of course this mostly speaks to the pedagogical influence of Klein. Books such as those by [[H.S.M. Coxeter]] routinely used the Erlangen program approach to help 'place' geometries. In pedagogic terms, the program became [[transformation geometry]], a mixed blessing in the sense that it builds on stronger intuitions than the style of [[Euclid]], but is less easily converted into a [[logical system]]. In his book ''Structuralism'' (1970) [[Jean Piaget]] says, "In the eyes of contemporary structuralist mathematicians, like [[Nicolas Bourbaki|Bourbaki]], the Erlangen program amounts to only a partial victory for structuralism, since they want to subordinate all mathematics, not just geometry, to the idea of [[mathematical structure|structure]]." For a geometry and its group, an element of the group is sometimes called a [[motion (geometry)|motion]] of the geometry. For example, one can learn about the [[Poincaré half-plane model]] of [[hyperbolic geometry]] through a development based on [[hyperbolic motion]]s. Such a development enables one to methodically prove the [[ultraparallel theorem]] by successive motions.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)