Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ethylene oxide
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Chemical properties== Ethylene oxide readily reacts with diverse compounds with opening of the ring. Its typical reactions are with nucleophiles which proceed via the '''[[nucleophilic substitution|S<sub>N</sub>2]]''' mechanism both in acidic (weak nucleophiles: water, alcohols) and alkaline media (strong nucleophiles: OH<sup>−</sup>, RO<sup>−</sup>, NH<sub>3</sub>, RNH<sub>2</sub>, RR'NH, etc.).<ref name="traven"/> The general reaction scheme is : [[File:Ethylene oxide reactions.png|400px|Ethylene oxide reactions|class=skin-invert-image]] and more specific reactions are described below. ===Addition of water and alcohols=== Aqueous solutions of ethylene oxide are rather stable and can exist for a long time without any noticeable chemical reaction. However adding a small amount of acid, such as strongly diluted [[sulfuric acid]], immediately leads to the formation of [[ethylene glycol]], even at room temperature: : (CH<sub>2</sub>CH<sub>2</sub>)O + H<sub>2</sub>O → HO–CH<sub>2</sub>CH<sub>2</sub>–OH The reaction also occurs in the gas phase, in the presence of a [[phosphoric acid]] salt as a catalyst.<ref name="oe3">{{cite book |chapter=Chapter III. Review of the individual reactions of ethylene oxide |title=Ethylene oxide |editor1=Zimakov, P.V. |editor2=Dyment, O. H. |publisher=Khimiya |year=1967 |pages=90–120}}</ref> The reaction is usually carried out at about {{convert|60|C|}} with a large excess of water, in order to prevent the reaction of the formed ethylene glycol with ethylene oxide that would form [[diethylene glycol|di-]] and [[triethylene glycol]]:<ref>{{cite web |title=Epoxyethane (Ethylene Oxide) |work=Alkenes menu |publisher=Chemguide |url=https://www.chemguide.co.uk/organicprops/alkenes/epoxyethane.html |access-date=5 October 2009}}</ref> : 2 (CH<sub>2</sub>CH<sub>2</sub>)O + H<sub>2</sub>O → HO–CH<sub>2</sub>CH<sub>2</sub>–O–CH<sub>2</sub>CH<sub>2</sub>–OH : 3 (CH<sub>2</sub>CH<sub>2</sub>)O + H<sub>2</sub>O → HO–CH<sub>2</sub>CH<sub>2</sub>–O–CH<sub>2</sub>CH<sub>2</sub>–O–CH<sub>2</sub>CH<sub>2</sub>–OH The use of alkaline catalysts may lead to the formation of [[polyethylene glycol]]: : n (CH<sub>2</sub>CH<sub>2</sub>)O + H<sub>2</sub>O → HO–(–CH<sub>2</sub>CH<sub>2</sub>–O–)<sub>n</sub>–H Reactions with [[alcohol (chemistry)|alcohols]] proceed similarly yielding ethylene glycol ethers: : (CH<sub>2</sub>CH<sub>2</sub>)O + C<sub>2</sub>H<sub>5</sub>OH → HO–CH<sub>2</sub>CH<sub>2</sub>–OC<sub>2</sub>H<sub>5</sub> : 2 (CH<sub>2</sub>CH<sub>2</sub>)O + C<sub>2</sub>H<sub>5</sub>OH → HO–CH<sub>2</sub>CH<sub>2</sub>–O–CH<sub>2</sub>CH<sub>2</sub>–OC<sub>2</sub>H<sub>5</sub> Reactions with lower alcohols occur less actively than with water and require more severe conditions, such as heating to {{convert|160|C|}} and pressurizing to {{convert|3|MPa||abbr=on}} and adding an acid or alkali catalyst. Reactions of ethylene oxide with fatty alcohols proceed in the presence of [[sodium]] metal, [[sodium hydroxide]], or [[boron trifluoride]] and are used for the synthesis of [[surfactants]].<ref name="oe3"/> ===Addition of carboxylic acids and their derivatives=== Reactions of ethylene oxide with [[carboxylic acid]]s in the presence of a catalyst results in glycol mono- and diesters: : (CH<sub>2</sub>CH<sub>2</sub>)O + CH<sub>3</sub>CO<sub>2</sub>H → HOCH<sub>2</sub>CH<sub>2</sub>–O<sub>2</sub>CCH<sub>3</sub> : (CH<sub>2</sub>CH<sub>2</sub>)O + (CH<sub>3</sub>CO)<sub>2</sub>O → CH<sub>3</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>O<sub>2</sub>CCH<sub>3</sub> The addition of acid [[amide]]s proceeds similarly: : (CH<sub>2</sub>CH<sub>2</sub>)O + CH<sub>3</sub>CONH<sub>2</sub> → HOCH<sub>2</sub>CH<sub>2</sub>NHC(O)CH<sub>3</sub> Addition of ethylene oxide to higher carboxylic acids is carried out at elevated temperatures (typically {{convert|140-180|C|}}) and pressure ({{convert|0.3-0.5|MPa||abbr=on}}) in an inert atmosphere, in presence of an alkaline catalyst (concentration 0.01–2%), such as hydroxide or carbonate of sodium or potassium.<ref>{{cite book |title=Nonionic surfactants: organic chemistry |editor1=van Os |editor2=N. M. |publisher=CRC Press |year=1998 |pages=129–131 |isbn=978-0-8247-9997-7 |url=https://books.google.com/books?id=YoZ6CjYNLoQC&pg=PA129}}</ref> The carboxylate ion acts as [[nucleophile]] in the reaction: : (CH<sub>2</sub>CH<sub>2</sub>)O + RCO<sub>2</sub><sup>−</sup> → RCO<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>O<sup>−</sup> : RCO<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>O<sup>−</sup> + RCO<sub>2</sub>H → RCO<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH + RCO<sub>2</sub><sup>−</sup> ===Adding ammonia and amines=== Ethylene oxide reacts with [[ammonia]] forming a mixture of mono-, di-, and tri- [[ethanolamine]]s. The reaction is stimulated by adding a small amount of water. : (CH<sub>2</sub>CH<sub>2</sub>)O + NH<sub>3</sub> → HO–CH<sub>2</sub>CH<sub>2</sub>–NH<sub>2</sub> : 2 (CH<sub>2</sub>CH<sub>2</sub>)O + NH<sub>3</sub> → (HO–CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>NH : 3 (CH<sub>2</sub>CH<sub>2</sub>)O + NH<sub>3</sub> → (HO–CH<sub>2</sub>CH<sub>2</sub>)<sub>3</sub>N Similarly proceed the reactions with primary and secondary amines: : (CH<sub>2</sub>CH<sub>2</sub>)O + RNH<sub>2</sub> → HO–CH<sub>2</sub>CH<sub>2</sub>–NHR Dialkylamino ethanols can further react with ethylene oxide, forming amino polyethylene glycols:<ref name="ect"/> : n (CH<sub>2</sub>CH<sub>2</sub>)O + R<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>OH → R<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>O–(–CH<sub>2</sub>CH<sub>2</sub>O–)<sub>n</sub>–H [[Trimethylamine]] reacts with ethylene oxide in the presence of water, forming [[choline]]:<ref>{{cite book |author1=Petrov, AA |author2=Balian HV |author3=Troshchenko AT |chapter=Chapter 12. Amino alcohol |title=Organic chemistry |editor=Stadnichuk |edition=5 |location=St. Petersburg |year=2002 |page=286 |isbn=5-8194-0067-4}}</ref> : (CH<sub>2</sub>CH<sub>2</sub>)O + (CH<sub>3</sub>)<sub>3</sub>N + H<sub>2</sub>O → [HOCH<sub>2</sub>CH<sub>2</sub>N (CH<sub>3</sub>)<sub>3</sub>]<sup>+</sup>OH<sup>−</sup> Aromatic primary and secondary amines also react with ethylene oxide, forming the corresponding arylamino alcohols. ===Halide addition=== Ethylene oxide readily reacts with aqueous solutions of [[hydrochloric acid|hydrochloric]], [[hydrobromic acid|hydrobromic]], and [[hydroiodic acid]]s to form [[halohydrin]]s. The reaction occurs easier with the last two acids: : (CH<sub>2</sub>CH<sub>2</sub>)O + HCl → HO–CH<sub>2</sub>CH<sub>2</sub>–Cl The reaction with these acids competes with the acid-catalyzed hydration of ethylene oxide; therefore, there is always a by-product of ethylene glycol with an admixture of [[diethylene glycol]]. For a cleaner product, the reaction is conducted in the gas phase or in an organic solvent. Ethylene fluorohydrin is obtained differently, by boiling [[hydrogen fluoride]] with a 5–6% solution of ethylene oxide in [[diethyl ether]]. The ether normally has a water content of 1.5–2%; in absence of water, ethylene oxide polymerizes.<ref>{{cite book |author1=Sheppard, William A. |author2=Sharts, Clay M. |title=Organic Fluorine Chemistry |publisher=W. A. Benjamin |year=1969 |page=98 |isbn=0-8053-8790-0 |url=https://archive.org/details/organicfluorinec0000shep |url-access=registration}}</ref> Halohydrins can also be obtained by passing ethylene oxide through aqueous solutions of metal halides:<ref name="oe3"/> : 2 (CH<sub>2</sub>CH<sub>2</sub>)O + CuCl<sub>2</sub> + 2 H<sub>2</sub>O → 2 HO–CH<sub>2</sub>CH<sub>2</sub>–Cl + Cu(OH)<sub>2</sub>↓ ===Metalorganic addition=== Interaction of ethylene oxide with [[organomagnesium]] compounds, which are [[Grignard reaction|Grignard reagents]], can be regarded as [[nucleophilic substitution]] influenced by [[carbanion]] organometallic compounds. The final product of the reaction is a primary alcohol: : <chem>(CH2CH2)O{} + RMgBr -> R-CH2CH2-OMgBr ->[\ce{H2O}] \overset{primary~alcohol}{R-CH2CH2-OH}</chem> Similar mechanism is valid for other organometallic compounds, such as alkyl lithium: : <chem>(CH2CH2)O{} + \overset{alkyl~lithium}{RLi} -> R-CH2CH2-OLi ->[\ce{H2O}] R-CH2CH2-OH</chem> ===Other addition reactions=== ====Addition of hydrogen cyanide==== Ethylene oxide easily reacts with [[hydrogen cyanide]] forming [[ethylene cyanohydrin]]: : (CH<sub>2</sub>CH<sub>2</sub>)O + HCN → HO–CH<sub>2</sub>CH<sub>2</sub>–CN A slightly chilled (10–20 °C) aqueous solution of [[calcium cyanide]] can be used instead of HCN:<ref>{{OrgSynth |author=Kendall, E. C. and McKenzie, B. |year=1923 |title=o-Chloromercuriphenol |volume=3 |pages=57 |prep=cv1p0256}}</ref> : 2 (CH<sub>2</sub>CH<sub>2</sub>)O + Ca(CN)<sub>2</sub> + 2 H<sub>2</sub>O → 2 HO–CH<sub>2</sub>CH<sub>2</sub>–CN + Ca(OH)<sub>2</sub> Ethylene cyanohydrin easily loses water, producing [[acrylonitrile]]: : HO–CH<sub>2</sub>CH<sub>2</sub>–CN → CH<sub>2</sub>=CH–CN + H<sub>2</sub>O ====Addition of hydrogen sulfide and mercaptans==== When reacting with the [[hydrogen sulfide]], ethylene oxide forms [[2-Mercaptoethanol|2-mercaptoethanol]] and [[thiodiglycol]], and with alkylmercaptans it produces 2-alkyl mercaptoetanol: : (CH<sub>2</sub>CH<sub>2</sub>)O + H<sub>2</sub>S → HO–CH<sub>2</sub>CH<sub>2</sub>–HS : 2 (CH<sub>2</sub>CH<sub>2</sub>)O + H<sub>2</sub>S → (HO–CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>S : (CH<sub>2</sub>CH<sub>2</sub>)O + RHS → HO–CH<sub>2</sub>CH<sub>2</sub>–SR The excess of ethylene oxide with an aqueous solution of hydrogen sulfide leads to the tris-(hydroxyethyl) sulfonyl hydroxide: : 3 (CH<sub>2</sub>CH<sub>2</sub>)O + H<sub>2</sub>S → [(HO–CH<sub>2</sub>CH<sub>2</sub>)<sub>3</sub>S<sup>+</sup>]OH<sup>−</sup> ====Addition of nitrous and nitric acids==== Reaction of ethylene oxide with aqueous solutions of [[barium nitrite]], [[calcium nitrite]], [[magnesium nitrite]], [[zinc nitrite]], or [[sodium nitrite]] leads to the formation of [[2-nitroethanol]]:<ref>{{OrgSynth |author=Noland, Wayland E. |prep=CV5P0833 |title=2-Nitroethanol|volume=5|pages=833|year=1973}}</ref> :2 (CH<sub>2</sub>CH<sub>2</sub>)O + Ca(NO<sub>2</sub>)<sub>2</sub> + 2 H<sub>2</sub>O → 2 HO–CH<sub>2</sub>CH<sub>2</sub>–NO<sub>2</sub> + Ca(OH)<sub>2</sub> With [[nitric acid]], ethylene oxide forms mono- and [[ethylene glycol dinitrate|dinitroglycols]]:<ref>{{cite book |author=Orlova, EY |title=Chemistry and technology of high explosives: Textbook for high schools |edition=3 |publisher=Khimiya |year=1981 |page=278}}</ref> : <chem>(CH2CH2)O{} + \overset{nitric\atop acid}{HNO3} -> HO-CH2CH2-ONO2 ->[\ce{+HNO3}] [\ce{-H2O}] O2NO-CH2CH2-ONO_2</chem> ====Reaction with compounds containing active methylene groups==== In the presence of [[alkoxide]]s, reactions of ethylene oxide with compounds containing active methylene group leads to the formation of [[gamma-Butyrolactone|butyrolactones]]:<ref>{{cite book |author=Vogel, A. I. |title=Vogel's Textbook of practical organic chemistry |edition=5 |location=UK |publisher=Longman Scientific & Technical |year=1989 |page=1088 |isbn=0-582-46236-3 |url=https://archive.org/details/Vogels_Textbook_of_Practical_Organic_Chemistry_5ed_1989_Longman_WW}}</ref> : [[File:2-ACETYLBUTYROLACTONE-SYNTHESIS.png|550px|Synthesis of 2-acetylbutyrolactone|class=skin-invert-image]] ====Alkylation of aromatic compounds==== Ethylene oxide enters into the [[Friedel–Crafts reaction]] with benzene to form [[phenethyl alcohol]]: : [[File:Oxirane+benzene.png|400px|class=skin-invert-image|Friedel-Crafts reaction with ethylene oxide]] [[Styrene]] can be obtained in one stage if this reaction is conducted at elevated temperatures ({{convert|315–440|C|}}) and pressures ({{convert|0.35–0.7|MPa||abbr=on}}), in presence of an aluminosilicate catalyst.<ref>Watson, James M. and Forward, Cleve (17 April 1984) "Reaction of benzene with ethylene oxide to produce styrene" {{US patent|4443643}}</ref> ====Synthesis of crown ethers==== A series of polynomial [[heterocyclic compound]]s, known as [[crown ether]]s, can be synthesized with ethylene oxide. One method is the cationic cyclopolymerization of ethylene oxide, limiting the size of the formed cycle:<ref name="crown">{{cite book |author=Hiraoka M. |title=Crown Compounds. Their Characteristics and Applications |publisher=Kodansha |year=1982 |pages=33–34 |isbn=4-06-139444-4}}</ref> : ''n'' (CH<sub>2</sub>CH<sub>2</sub>)O → (–CH<sub>2</sub>CH<sub>2</sub>–O–)<sub>''n''</sub> To suppress the formation of other linear polymers the reaction is carried out in a highly dilute solution.<ref name="crown" /> Reaction of ethylene oxide with [[sulfur dioxide]] in the presence of caesium salts leads to the formation of an 11-membered heterocyclic compound which has the complexing properties of crown ethers:<ref name="autogenerated1">{{cite journal |author=H. W. Roesky |author2=H. G. Schmidt |title=Reaction of Ethylene Oxide with Sulfur Dioxide in the Presence of Cesium Ions: Synthesis of 1,3,6,9,2 λ <sup>4</sup>-Tetraoxathia-2-cycloundecanone |journal=Angewandte Chemie International Edition |year=1985 |volume=24|issue=8 |page=695 |doi=10.1002/anie.198506951}}</ref> : [[File:Tetraoxathia-2-cycloundecanone.png|350px|class=skin-invert-image]] ===Isomerization=== When heated to about {{convert|400|C||sigfig=2}}, or to {{convert|150–300|C||sigfig=2}} in the presence of a catalyst ([[aluminium oxide|Al<sub>2</sub>O<sub>3</sub>]], [[phosphoric acid|H<sub>3</sub>PO<sub>4</sub>]], etc.), ethylene oxide [[isomerization|isomerizes]] into [[acetaldehyde]]:<ref name="petrov">{{cite book |author1=Petrov, AA |author2=Balian HV |author3=Troshchenko AT |chapter=Chapter 4. Ethers |title=Organic chemistry |edition=5 |location=St. Petersburg |year=2002 |pages=159–160 |isbn=5-8194-0067-4}}</ref> : <chem>(CH2CH2)O ->[\ce{200^\circ C}] [\ce{Al2O3}] \overset{acetaldehyde}{CH3CHO}</chem> The radical mechanism was proposed to explain this reaction in the gas phase; it comprises the following stages:<ref name="benson">{{cite journal |author=Benson S. W. |title=Pyrolysis of Ethylene Oxide. A Hot Molecule Reaction |journal=The Journal of Chemical Physics |year=1964 |volume=40 |issue=1 |page=105 |bibcode=1964JChPh..40..105B |doi=10.1063/1.1729851}}</ref> {{Numbered block|: |(CH<sub>2</sub>CH<sub>2</sub>)O ↔ •CH<sub>2</sub>CH<sub>2</sub>O• → CH<sub>3</sub>CHO*|{{EquationRef|1}}}} {{Numbered block|: |CH<sub>3</sub>CHO* → CH<sub>3</sub>• + CHO•|{{EquationRef|2}}}} {{Numbered block|: |CH<sub>3</sub>CHO* + M → CH<sub>3</sub>CHO + M*|{{EquationRef|3}}}} In reaction ({{EquationNote|3}}), '''M''' refers to the wall of the reaction vessel or to a heterogeneous catalyst. The moiety CH<sub>3</sub>CHO* represents a short-lived (lifetime of 10<sup>−8.5</sup> seconds), activated molecule of acetaldehyde. Its excess energy is about 355.6 kJ/mol, which exceeds by 29.3 kJ/mol the [[binding energy]] of the C-C bond in acetaldehyde.<ref name="benson"/> In absence of a catalyst, the thermal isomerization of ethylene oxide is never selective and apart from acetaldehyde yields significant amount of by-products (see section [[#Thermal decomposition|Thermal decomposition]]).<ref name="oe2"/> ===Reduction reaction=== Ethylene oxide can be hydrogenated into ethanol in the presence of a catalyst, such as [[nickel]], [[platinum]], [[palladium]],<ref name="oe2"/> [[borane]]s, [[lithium aluminium hydride]], and some other [[hydride]]s.<ref name="reduction">{{cite book |author=Hudlický, M. |title=Reductions in Organic Chemistry |location=Chichester |publisher=Ellis Horwood Limited |year=1984 |page=83 |isbn=0-85312-345-4}}</ref> : <chem>(CH2CH2)O{} + H2 ->[{}\atop\ce{Ni, Pt, Pd, BH3, LiAlH4}\text{ or other hydrides}] [\ce{80^\circ C}] \underset{ethanol}{C2H5OH}</chem> Conversely, with some other catalysts, ethylene oxide may be ''reduced'' by hydrogen to ethylene with the yield up to 70%. The reduction catalysts include mixtures of zinc dust and [[acetic acid]], of lithium aluminium hydride with [[titanium trichloride]] (the reducing agent is actually [[titanium(II) chloride|titanium dichloride]], formed by the reaction between LiAlH<sub>4</sub> and TiCl<sub>3</sub>) and of [[iron(III) chloride]] with [[butyllithium]] in [[tetrahydrofuran]].<ref name="reduction"/> : <chem>(CH2CH2)O{} + H2 ->[{}\atop\ce{{Zn} + CH3COOH}] \underset{ethylene}{CH2=CH2} + H2O</chem> ===Oxidation=== Ethylene oxide can further be oxidized, depending on the conditions, to [[glycolic acid]] or [[carbon dioxide]]: : <chem>(CH2CH2)O{} + O2 ->[\ce{AgNO3}] \overset{glycolic\ acid}{HOCH2CO2H}</chem> Deep gas-phase reactor oxidation of ethylene oxide at {{convert|800-1000|K|}} and a pressure of {{convert|0.1–1|MPa||abbr=on}} yields a complex mixture of products containing O<sub>2</sub>, H<sub>2</sub>, [[carbon monoxide|CO]], [[carbon dioxide|CO<sub>2</sub>]], [[methane|CH<sub>4</sub>]], [[acetylene|C<sub>2</sub>H<sub>2</sub>]], [[ethylene|C<sub>2</sub>H<sub>4</sub>]], [[ethane|C<sub>2</sub>H<sub>6</sub>]], [[propylene|C<sub>3</sub>H<sub>6</sub>]], [[propane|C<sub>3</sub>H<sub>8</sub>]], and [[acetaldehyde|CH<sub>3</sub>CHO]].<ref>{{cite journal |author=Dagaut P. |author2=Voisin D. |author3=Cathonnet M. |author4=Mcguinness M. |author5=Simmie J. M. |title=The oxidation of ethylene oxide in a jet-stirred reactor and its ignition in shock waves |journal=Combustion and Flame |year=1996 |volume=156 |issue=1–2 |pages=62–68 |doi=10.1016/0010-2180(95)00229-4 |bibcode=1996CoFl..106...62D }}</ref> ===Dimerization=== In the presence of acid catalysts, ethylene oxide dimerizes to afford [[dioxane]]: : [[File:Dioxane-synthesis.png|250px|Synthesis of dioxane|class=skin-invert-image]] The reaction mechanism is as follows:<ref name="oe2"/> : [[File:Dioxan-HerstellungCZ.png|650px|Mechanism of dimerization|class=skin-invert-image]] The dimerization reaction is unselective. By-products include [[acetaldehyde]] (due to [[#Isomerization|isomerization]]). The selectivity and speed of dimerization can be increased by adding a catalyst, such as platinum, platinum-palladium, or [[iodine]] with [[sulfolane]]. 2-methyl-1,3-[[dioxolane]] is formed as a side product in the last case.<ref>Stapp, Paul R. (21 December 1976) "Cyclodimerization of ethylene oxide" {{US patent|3998848}}</ref> ===Polymerization=== Liquid ethylene oxide can form [[polyethylene glycol]]s. The polymerization can proceed via radical and ionic mechanisms, but only the latter has a wide practical application.<ref name="glycol">{{cite book |author1=Dyment, ON |author2=Kazanskii, KS |author3=Miroshnikov AM |title=Гликоли и другие производные окисей этилена и пропилена |trans-title=Glycols and other derivatives of ethylene oxide and propylene |editor=Dyment, ON |publisher=Khimiya |year=1976 |pages=214–217}}</ref> [[Cationic polymerization]] of ethylene oxide is assisted by [[protic]] acids ([[perchloric acid|HClO<sub>4</sub>]], [[hydrochloric acid|HCl]]), Lewis acids ([[Tin(IV) chloride|SnCl<sub>4</sub>]], [[boron trifluoride|BF<sub>3</sub>]], etc.), [[organometallic compound]]s, or more complex reagents:<ref name="glycol"/> : <math chem>n\ce{(CH2CH2)O ->[\ce{SnCl4}]}\ \overbrace{\ce{(CH2CH2-O-)}_n}^\ce{polyethyleneglycol}</math> The reaction mechanism is as follows.<ref name="poly">{{cite book |title=Polymeric materials encyclopedia |editor=Salamone, Joseph C. |publisher=CRC Press |year=1996 |volume=8 |pages=6036–6037 |isbn=978-0-8493-2470-3}}</ref> At the first stage, the catalyst (MX<sub>m</sub>) is initiated by alkyl-or acylhalogen or by compounds with active hydrogen atoms, usually water, alcohol, or glycol: : MX<sub>m</sub> + ROH → MX<sub>m</sub>RO<sup>−</sup>H<sup>+</sup> The resulting active complex reacts with ethylene oxide via the '''S<sub>N</sub>2''' mechanism: : (CH<sub>2</sub>CH<sub>2</sub>)O + MX<sub>m</sub>RO<sup>−</sup>H<sup>+</sup> → (CH<sub>2</sub>CH<sub>2</sub>)O•••H<sup>+</sup>O<sup>−</sup>RMX<sub>m</sub> : (CH<sub>2</sub>CH<sub>2</sub>)O•••H<sup>+</sup> O<sup>−</sup>RMX<sub>m</sub> → HO–CH<sub>2</sub>CH<sub>2</sub><sup>+</sup> + MX<sub>m</sub>RO<sup>−</sup><sub>2</sub> : HO–CH<sub>2</sub>CH<sub>2</sub><sup>+</sup> + n (CH<sub>2</sub>CH<sub>2</sub>)O → HO–CH<sub>2</sub>CH<sub>2</sub>–(O–CH<sub>2</sub>CH<sub>2</sub>)<sub>n</sub><sup>+</sup> The chain breaks as : HO–CH<sub>2</sub>CH<sub>2</sub>–(O–CH<sub>2</sub>CH<sub>2</sub>)<sub>n</sub><sup>+</sup> + MX<sub>m</sub>RO<sup>−</sup> → HO–CH<sub>2</sub>CH<sub>2</sub>–(O–CH<sub>2</sub>CH<sub>2</sub>)<sub>n</sub>–OR + MX<sub>m</sub> : H(O–CH<sub>2</sub>CH<sub>2</sub>)<sub>n</sub>–O–CH<sub>2</sub>–CH<sub>2</sub><sup>+</sup> + MX<sub>m</sub>RO<sup>−</sup> → H(O–CH<sub>2</sub>CH<sub>2</sub>)<sub>n</sub>–O–CH=CH<sub>2</sub> + MX<sub>m</sub> + ROH [[Anionic polymerization]] of ethylene oxide is assisted by bases, such as [[alkoxide]]s, [[hydroxide]]s, [[carbonate]]s, or other compounds of alkali or [[alkaline earth metal]]s.<ref name="glycol"/> The reaction mechanism is as follows:<ref name="poly"/> : (CH<sub>2</sub>CH<sub>2</sub>)O + RONa → RO–CH<sub>2</sub>CH<sub>2</sub>–O<sup>−</sup>Na<sup>+</sup> : RO–CH<sub>2</sub>CH<sub>2</sub>–O<sup>−</sup>Na<sup>+</sup> + n (CH<sub>2</sub>CH<sub>2</sub>)O → RO–(CH<sub>2</sub>CH<sub>2</sub>–O)<sub>n</sub>–CH<sub>2</sub>CH<sub>2</sub>–O<sup>−</sup>Na<sup>+</sup> : RO–(CH<sub>2</sub>CH<sub>2</sub>–O)<sub>n</sub>–CH<sub>2</sub>CH<sub>2</sub>–O<sup>−</sup>Na<sup>+</sup> → RO–(CH<sub>2</sub>CH<sub>2</sub>–O)<sub>n</sub>–CH=CH<sub>2</sub> + NaOH : RO–(CH<sub>2</sub>CH<sub>2</sub>–O)<sub>n</sub>–CH<sub>2</sub>CH<sub>2</sub>–O<sup>−</sup>Na<sup>+</sup> + H<sub>2</sub>O → RO–(CH<sub>2</sub>CH<sub>2</sub>–O)<sub>(n+1)</sub>OH + NaOH ===Thermal decomposition=== Ethylene oxide is relatively stable to heating – in the absence of a catalyst, it does not dissociate up to {{convert|300|C|}}, and only above {{convert|570|C|}} there is a major [[exothermic]] decomposition, which proceeds through the radical mechanism.<ref name="oe2">{{cite book |chapter=Chapter II. Chemical properties of ethylene oxide |title=Ethylene oxide |editor1=Zimakov, P.V. |editor2=Dyment, O. H. |publisher=Khimiya |year=1967 |pages=57–85}}</ref> The first stage involves [[#Isomerization|isomerization]], however high temperature accelerates the radical processes. They result in a gas mixture containing acetaldehyde, ethane, ethyl, methane, hydrogen, carbon dioxide, [[ketene]], and [[formaldehyde]].<ref>{{cite journal |author1=Neufeld L.M. |author2=Blades A.T. |title=The Kinetics of the Thermal Reactions of Ethylene Oxide |journal=Canadian Journal of Chemistry |year=1963 |volume=41 |issue=12 |pages=2956–2961 |doi=10.1139/v63-434 |bibcode=1963CaJCh..41.2956N }}</ref> High-temperature [[pyrolysis]] ({{convert|830–1200|K|}}) at elevated pressure in an inert atmosphere leads to a more complex composition of the gas mixture, which also contains [[acetylene]] and [[propane]].<ref name="Lifshitz">{{cite journal |author=Lifshitz A. |author2=Ben-Hamou H. |title=Thermal reactions of cyclic ethers at high temperatures. 1. Pyrolysis of ethylene oxide behind reflected shocks |journal=The Journal of Physical Chemistry |year=1983 |volume=87 |issue=10 |pages=1782–1787 |doi=10.1021/j100233a026 }}</ref> Contrary to the isomerization, initiation of the chain occurs mainly as follows:<ref name="Lifshitz"/> : (CH<sub>2</sub>CH<sub>2</sub>)O → •CH<sub>2</sub>CH<sub>2</sub>O• → CH<sub>2</sub>O + CH<sub>2</sub>: When carrying the thermal decomposition of ethylene oxide in the presence of transition metal compounds as catalysts, it is possible not only to reduce its temperature, but also to have [[ethyl group|ethyl]] as the main product, that is to reverse the ethylene oxide synthesis reaction. ===Other reactions=== [[Thiocyanate]] ions or [[thiourea]] transform ethylene oxide into [[thiirane]] (ethylene sulfide):<ref>{{cite book |author=Gilchrist T. |title=Heterocyclic Chemistry |publisher=Pearson Education |year=1985 |pages=411–412 |isbn=81-317-0793-8}}</ref> : (CH<sub>2</sub>CH<sub>2</sub>)O + (NH<sub>2</sub>)<sub>2</sub>C=S → (CH<sub>2</sub>CH<sub>2</sub>)S + (NH<sub>2</sub>)<sub>2</sub>C=O : [[File:Thiirane-synthesis.png|550px|class=skin-invert-image|mechanism synthesis thiiranes of ethylene oxide under the influence of thiocyanate ion]] Reaction of [[phosphorus pentachloride]] with ethylene oxide produces [[ethylene dichloride]]:<ref name="oe3"/> : (CH<sub>2</sub>CH<sub>2</sub>)O + PCl<sub>5</sub> → Cl–CH<sub>2</sub>CH<sub>2</sub>–Cl + POCl<sub>3</sub> Other dichloro derivatives of ethylene oxide can be obtained by combined action of [[sulfuryl chloride]] (SOCl<sub>2</sub>) and [[pyridine]] and of [[triphenylphosphine]] and [[carbon tetrachloride]].<ref name="march2"> {{cite book |author1=Smith, Michael B. |author2=March, Jerry |title=Advanced organic chemistry. Reactions, Mechanisms, and Structure |publisher=Wiley-Interscience |year=2007 |isbn=978-0-471-72091-1 |url=https://books.google.com/books?id=JDR-nZpojeEC }}</ref> [[Phosphorus trichloride]] reacts with ethylene oxide forming chloroethyl esters of phosphorous acid:<ref name="oe3"/> : (CH<sub>2</sub>CH<sub>2</sub>)O + PCl<sub>3</sub> → Cl–CH<sub>2</sub>CH<sub>2</sub>–OPCl<sub>2</sub> : 2 (CH<sub>2</sub>CH<sub>2</sub>)O + PCl<sub>3</sub> → (Cl–CH<sub>2</sub>CH<sub>2</sub>–O)<sub>2</sub>PCl : 3 (CH<sub>2</sub>CH<sub>2</sub>)O + PCl<sub>3</sub> → Cl–CH<sub>2</sub>CH<sub>2</sub>–O)<sub>3</sub>P The reaction product of ethylene oxide with [[acyl chloride]]s in the presence of [[sodium iodide]] is a complex iodoethyl ester:<ref name="march2"/> : (CH<sub>2</sub>CH<sub>2</sub>)O + RCOCl + NaI → RC(O)–OCH<sub>2</sub>CH<sub>2</sub>–I + NaCl Heating ethylene oxide to 100 °C with [[carbon dioxide]], in a non-polar solvent in the presence of ''bis''-(triphenylphosphine)-nickel(0) results in [[ethylene carbonate]]:<ref>{{cite book |author1=Fieser, L. |author2=Fieser, M. |title=Reagents for Organic Synthesis |publisher=Wiley |volume=7 |year=1979 |page=[https://archive.org/details/reagentsfororgan07fies_0/page/545 545] |isbn=978-0-471-02918-2 |url=https://archive.org/details/reagentsfororgan07fies_0/page/545 |url-access=registration }}</ref> : [[File:Ethylene-carbonate-syn.png|380px|Synthesis of ethylene carbonate|class=skin-invert-image]] In industry, a similar reaction is carried out at high pressure and temperature in the presence of quaternary ammonium or phosphonium salts as a catalyst.<ref>{{cite book |author=Sheldon RA |title=Chemicals from synthesis gas: catalytic reactions of CO and, Volume 2 |page=193 |publisher=Springer |year=1983 |isbn=90-277-1489-4 |url=https://books.google.com/books?id=s1_rjRUlu1EC&pg=PA193}}</ref> Reaction of ethylene oxide with [[formaldehyde]] at 80–150 °C in the presence of a catalyst leads to the formation of [[dioxolane|1,3-dioxolane]]:<ref name="fiser">{{cite book |author1=Fieser, L. |author2=Fieser, M. |title=Reagents for Organic Synthesis |publisher=Wiley |year=1977 |isbn=978-0-471-25873-5 |volume=6 |page=197}}</ref> : [[File:Dioxolane.png|330px|Synthesis of 1,3-dioxolane|class=skin-invert-image]] Substituting formaldehyde by other aldehydes or ketones results in a 2-substituted 1,3-dioxolane (yield: 70–85%, catalyst: tetraethylammonium bromide).<ref name="fiser"/> Catalytic [[hydroformylation]] of ethylene oxide gives hydroxypropanal which can be hydrogenated to [[propane-1,3-diol]]:<ref>Han, Yuan-Zhang and Viswanathan, Krishnan (13 February 2003) "Hydroformylation of ethylene oxide" {{US patent|20030032845}}</ref> : <chem>(CH2CH2)O + CO + H2 -> CHO-CH2CH2-OH ->[\ce{+H2}] HO-CH2CH2CH2-OH</chem>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)