Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euclidean distance
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Higher dimensions === [[File:Euclidean distance 3d 2 cropped.png|thumb|upright=1.2|Deriving the <math>n</math>-dimensional Euclidean distance formula by repeatedly applying the Pythagorean theorem]] In three dimensions, for points given by their Cartesian coordinates, the distance is <math display=block>d(p,q)=\sqrt{(p_1-q_1)^2 + (p_2-q_2)^2 + (p_3-q_3)^2}.</math> In general, for points given by Cartesian coordinates in <math>n</math>-dimensional Euclidean space, the distance is<ref>{{citation|title=Geometry: The Language of Space and Form|series=Facts on File math library|first=John|last=Tabak|publisher=Infobase Publishing|year=2014|isbn=978-0-8160-6876-0|page=150|url=https://books.google.com/books?id=r0HuPiexnYwC&pg=PA150}}</ref> <math display=block>d(p,q) = \sqrt{(p_1- q_1)^2 + (p_2 - q_2)^2+\cdots+(p_n - q_n)^2}.</math> The Euclidean distance may also be expressed more compactly in terms of the [[Euclidean norm]] of the [[Euclidean vector]] difference: <math display=block>d(p,q) = \| p - q \|.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)