Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euclidean minimum spanning tree
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Empty regions=== [[File:EMST empty regions.svg|upright=1.2|thumb|Empty regions for the Euclidean minimum spanning tree: For the red edge shown, these regions cannot contain any other vertices of the tree. White: the empty lens defining the [[relative neighborhood graph]]. Light blue: the diameter circle defining the [[Gabriel graph]] and forming an empty circle for the [[Delaunay triangulation]]. Dark blue: a 60Β°β120Β° [[rhombus]] that cannot overlap with the rhombi of other spanning tree edges.]] For any edge <math>uv</math> of any Euclidean minimum spanning tree, the [[Lens (geometry)|lens]] (or [[vesica piscis]]) formed by intersecting the two circles with <math>uv</math> as their radii cannot have any other given vertex <math>w</math> in its interior. Put another way, if any tree has an edge <math>uv</math> whose lens contains a third point <math>w</math>, then it is not of minimum length. For, by the geometry of the two circles, <math>w</math> would be closer to both <math>u</math> and <math>v</math> than they are to each other. If edge <math>uv</math> were removed from the tree, <math>w</math> would remain connected to one of <math>u</math> and <math>v</math>, but not the other. Replacing the removed edge <math>uv</math> by <math>uw</math> or <math>vw</math> (whichever of these two edges reconnects <math>w</math> to the vertex from which it was disconnected) would produce a shorter tree.{{r|gilpol}} For any edge <math>uv</math> of any Euclidean minimum spanning tree, the [[rhombus]] with angles of 60Β° and 120Β°, having <math>uv</math> as its long diagonal, is disjoint from the rhombi formed analogously by all other edges. Two edges sharing an endpoint cannot have overlapping rhombi, because that would imply an edge angle sharper than 60Β°, and two disjoint edges cannot have overlapping rhombi; if they did, the longer of the two edges could be replaced by a shorter edge among the same four vertices.{{r|gilpol}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)