Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler brick
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generating formula == Euler found at least two [[parametric solution]]s to the problem, but neither gives all solutions.<ref>{{mathworld|urlname=EulerBrick|title=Euler Brick}}</ref> An infinitude of Euler bricks can be generated with [[Nicholas Saunderson|Saunderson]]'s<ref name=Saunderson>{{cite web |series=Math table |title=Treasure Hunting Perfect Euler bricks |date=February 24, 2009 |first=Oliver |last=Knill |url=http://www.math.harvard.edu/~knill/various/eulercuboid/lecture.pdf |publisher=[[Harvard University]]}}</ref> [[parametric formula]]. Let {{math|(''u'', ''v'', ''w'')}} be a [[Pythagorean triple]] (that is, {{math|''u''{{sup|2}} + ''v''{{sup|2}} {{=}} ''w''{{sup|2}}}}.) Then<ref name=Sierpinski/>{{rp|105}} the edges :<math> a=u|4v^2-w^2| ,\quad b=v|4u^2-w^2|, \quad c=4uvw </math> give face diagonals :<math>d=w^3, \quad e=u(4v^2+w^2), \quad f=v(4u^2+w^2).</math> There are many Euler bricks which are not parametrized as above, for instance the Euler brick with edges {{math|(''a'', ''b'', ''c'') <nowiki>=</nowiki> (240, 252, 275)}} and face diagonals {{math|(''d'', ''e'', ''f'' ) <nowiki>=</nowiki> (348, 365, 373)}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)