Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Exact functor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generalizations == In [[Grothendieck's Séminaire de géométrie algébrique|SGA4]], tome I, section 1, the notion of left (right) exact functors are defined for general categories, and not just abelian ones. The definition is as follows: :Let ''C'' be a category with finite projective (resp. injective) limits. Then a functor from ''C'' to another category ''C′'' is left (resp. right) exact if it commutes with finite projective (resp. inductive) limits. Despite its abstraction, this general definition has useful consequences. For example, in section 1.8, Grothendieck proves that a functor is pro-representable if and only if it is left exact, under some mild conditions on the category ''C''. The exact functors between Quillen's [[Exact category|exact categories]] generalize the exact functors between abelian categories discussed here. The regular functors between [[Regular category|regular categories]] are sometimes called exact functors and generalize the exact functors discussed here.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)