Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Exsecant
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Mathematical identities== ==={{anchor|arcexsec}}Inverse function=== The [[inverse function|inverse]] of the exsecant function, which might be symbolized {{math|arcexsec}},{{r|hall}} is well defined if its argument <math>y \geq 0</math> or <math>y \leq -2</math> and can be expressed in terms of other [[inverse trigonometric function]]s (using [[radian]]s for the angle): <math display=block> \operatorname{arcexsec}y = \arcsec(y+1) = \begin{cases} {\arctan}\bigl(\!{\textstyle \sqrt{y^2+2y}}\,\bigr) & \text{if}\ \ y \geq 0, \\[6mu] \text{undefined} & \text{if}\ \ {-2} < y < 0, \\[4mu] \pi - {\arctan}\bigl(\!{\textstyle \sqrt{y^2+2y}}\,\bigr) & \text{if}\ \ y \leq {-2}; \\ \end{cases}_{\vphantom.} </math> the arctangent expression is well behaved for small angles.{{r|scheme inverse}} ===Calculus=== While historical uses of the exsecant did not explicitly involve [[calculus]], its [[derivative (mathematics)|derivative]] and [[antiderivative]] (for {{mvar|x}} in radians) are:{{r|mathworld}} <math display=block>\begin{align} \frac{\mathrm{d}}{\mathrm{d}x}\operatorname{exsec} x &= \tan x\,\sec x, \\[10mu] \int\operatorname{exsec} x\,\mathrm{d}x &= \ln\bigl|\sec x + \tan x\bigr| - x + C,\vphantom{\int_|} \end{align}</math> where {{math|ln}} is the [[natural logarithm]]. See also [[Integral of the secant function]]. ===Double angle identity=== The exsecant of twice an angle is:{{r|hall}} <math display=block>\operatorname{exsec} 2\theta = \frac{2 \sin^2 \theta} {1 - 2 \sin^2 \theta}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)