Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Farey sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== ===Sequence length and index of a fraction=== The Farey sequence of order {{mvar|n}} contains all of the members of the Farey sequences of lower orders. In particular {{mvar|F<sub>n</sub>}} contains all of the members of {{math|''F''<sub>''n''−1</sub>}} and also contains an additional fraction for each number that is less than {{mvar|n}} and [[coprime]] to {{mvar|n}}. Thus {{math|''F''<sub>6</sub>}} consists of {{math|''F''<sub>5</sub>}} together with the fractions {{sfrac|1|6}} and {{sfrac|5|6}}. The middle term of a Farey sequence {{mvar|F<sub>n</sub>}} is always {{sfrac|1|2}}, for {{math|''n'' > 1}}. From this, we can relate the lengths of {{mvar|F<sub>n</sub>}} and {{math|''F''<sub>''n''−1</sub>}} using [[Euler's totient function]] {{math|''φ''(''n'')}}: <math display=block>|F_n| = |F_{n-1}| + \varphi(n).</math> Using the fact that {{math|1={{abs|''F''<sub>1</sub>}} = 2}}, we can derive an expression for the length of {{mvar|F<sub>n</sub>}}:<ref>{{Cite OEIS|A005728}}</ref> <math display=block>|F_n| = 1 + \sum_{m=1}^n \varphi(m) = 1 + \Phi(n),</math> where {{math|Φ(''n'')}} is the [[Totient summatory function|summatory totient]]. We also have : <math display=block>|F_n| = \frac{1}{2}\left(3+\sum_{d=1}^n \mu(d) \left\lfloor \tfrac{n}{d} \right\rfloor^2 \right),</math> and by a [[Möbius inversion formula]] : <math display=block>|F_n| = \frac{1}{2} (n+3)n - \sum_{d=2}^n|F_{\lfloor n/d \rfloor}|,</math> where {{math|''μ''(''d'')}} is the number-theoretic [[Möbius function]], and <math>\lfloor n/d \rfloor </math> is the [[Floor and ceiling functions|floor function]]. The asymptotic behaviour of {{math|{{abs|''F<sub>n</sub>''}}}} is : <math display=block>|F_n| \sim \frac {3n^2}{\pi^2}.</math> The number of Farey fractions with denominators equal to {{mvar|k}} in {{mvar|F<sub>n</sub>}} is given by {{math|''φ''(''k'')}} when {{math|''k'' ≤ ''n''}} and zero otherwise. Concerning the numerators one can define the function <math>\mathcal{N}_n(h)</math> that returns the number of Farey fractions with numerators equal to {{mvar|h}} in {{mvar|F<sub>n</sub>}}. This function has some interesting properties as<ref name=Tomas2024>{{cite journal |last=Tomas Garcia |first=Rogelio |url=https://math.colgate.edu/~integers/y63/y63.pdf|title=Farey Fractions with Equal Numerators and the Rank of Unit Fractions | journal=Integers | date=July 2024 |volume=24 <!-- |access-date=13 July 2024 --> |doi=10.5281/zenodo.12685697 |arxiv=2404.08283 }}</ref> :<math>\mathcal{N}_n(1)=n</math>, :<math>\mathcal{N}_n(p^m)=\left\lceil(n-p^m) \left(1- 1/p \right)\right\rceil</math> for any prime number <math>p</math>, :<math>\mathcal{N}_{n+mh}(h)=\mathcal{N}_{n}(h) + m\varphi(h)</math> for any integer {{math|''m'' ≥ 0}}, :<math>\mathcal{N}_{n}(4h)=\mathcal{N}_{n}(2h) - \varphi(2h).</math> In particular, the property in the third line above implies <math>\mathcal{N}_{mh}(h)=(m-1)\varphi(h)</math> and, further, <math>\mathcal{N}_{2h}(h)=\varphi(h).</math> The latter means that, for Farey sequences of even order {{mvar|n}}, the number of fractions with numerators equal to {{math|{{sfrac|n|2}}}} is the same as the number of fractions with denominators equal to {{math|{{sfrac|n|2}}}}, that is <math>\mathcal{N}_{n}(n/2) = \varphi(n/2)</math>. The index <math>I_n(a_{k,n}) = k</math> of a fraction <math>a_{k,n}</math> in the Farey sequence <math>F_n=\{a_{k,n} : k = 0, 1, \ldots, m_n\}</math> is simply the position that <math>a_{k,n}</math> occupies in the sequence. This is of special relevance as it is used in an alternative formulation of the [[Riemann hypothesis]], see [[#Riemann hypothesis|below]]. Various useful properties follow: <math display=block>\begin{align} I_n(0/1) &= 0, \\[6pt] I_n(1/n) &= 1, \\[2pt] I_n(1/2) &= \frac{|F_n|-1}{2}, \\[2pt] I_n(1/1) &= |F_n|-1 , \\[2pt] I_n(h/k) &= |F_n|-1 - I_n\left(\frac{k-h}{k}\right). \end{align}</math> The index of {{math|{{sfrac|1|''k''}}}} where {{math|{{sfrac|n|''i''+1}} < ''k'' ≤ {{sfrac|''n''|''i''}}}} and {{mvar|n}} is the [[least common multiple]] of the first {{mvar|i}} numbers, {{math|1=''n'' = lcm([2, ''i''])}}, is given by:<ref name=Tomas2018>{{cite journal |last=Tomas |first=Rogelio |url=https://cs.uwaterloo.ca/journals/JIS/VOL25/Tomas/tomas5.pdf|title=Partial Franel sums | journal=Journal of Integer Sequences | date=January 2022 |volume=25 |issue=1 <!-- |access-date=16 January 2022 --> }}</ref> <math display=block>I_n(1/k) = 1 + n \sum_{j=1}^{i} \frac{\varphi(j)}{j} - k\Phi(i).</math> A similar expression was used as an approximation of <math>I_n(x)</math> for low values of <math>x</math> in the classical paper by F. Dress.<ref name=Dress1999>{{cite journal |last=Dress |first=F. |url=http://archive.numdam.org/article/JTNB_1999__11_2_345_0.pdf|title=Discrépance des suites de Farey| journal= J. Théorie des Nr. Bordx.| date=1999 |volume=11 <!-- |access-date=11 January 2025 --> }}</ref> A general expression for <math>I_n(h/k)</math> for any Farey fraction <math>h/k</math> is given in.<ref name=Tomas2025>{{cite journal |last=Tomas Garcia |first=Rogelio |url=https://www.mdpi.com/2227-7390/13/1/140|title=New Analytical Formulas for the Rank of Farey Fractions and Estimates of the Local Discrepancy| journal=Mathematics| date=2025 |volume=13 |issue=1 |page=140 |doi=10.3390/math13010140 <!-- |access-date=11 January 2025 --> |doi-access=free }}</ref> ===Farey neighbours<!-- This section is linked from [[Farey pair]] -->=== Fractions which are neighbouring terms in any Farey sequence are known as a ''Farey pair'' and have the following properties. If {{math|{{sfrac|''a''|''b''}}}} and {{math|{{sfrac|''c''|''d''}}}} are neighbours in a Farey sequence, with {{math|{{sfrac|''a''|''b''}} < {{sfrac|''c''|''d''}}}}, then their difference {{math|{{sfrac|''c''|''d''}} − {{sfrac|''a''|''b''}}}} is equal to {{math|{{sfrac|1|''bd''}}}}. Since <math display=block>\frac{c}{d} - \frac{a}{b} = \frac{bc - ad}{bd},</math> this is equivalent to saying that <math display=block>bc - ad = 1.</math> Thus {{sfrac|1|3}} and {{sfrac|2|5}} are neighbours in {{math|''F''<sub>5</sub>}}, and their difference is {{sfrac|1|15}}. The converse is also true. If <math display=block>bc - ad = 1</math> for positive integers {{math|''a'', ''b'', ''c'', ''d''}} with {{math|''a'' < ''b''}} and {{math|''c'' < ''d''}}, then {{math|{{sfrac|''a''|''b''}}}} and {{math|{{sfrac|''c''|''d''}}}} will be neighbours in the Farey sequence of order {{math|max(''b,d'')}}. If {{math|{{sfrac|''p''|''q''}}}} has neighbours {{math|{{sfrac|''a''|''b''}}}} and {{math|{{sfrac|''c''|''d''}}}} in some Farey sequence, with {{math|{{sfrac|''a''|''b''}} < {{sfrac|''p''|''q''}} < {{sfrac|''c''|''d''}}}}, then {{math|{{sfrac|''p''|''q''}}}} is the [[mediant (mathematics)|mediant]] of {{math|{{sfrac|''a''|''b''}}}} and {{math|{{sfrac|''c''|''d''}}}} – in other words, <math display=block>\frac{p}{q} = \frac{a + c}{b + d}.</math> This follows easily from the previous property, since if <math display=block>\begin{align} && bp - aq &= qc - pd = 1, \\[4pt] \implies && bp + pd &= qc + aq, \\[4pt] \implies && p(b + d) &= q(a + c), \\ \implies && \frac{p}{q} &= \frac{a+c}{b+d}. \end{align}</math> It follows that if {{math|{{sfrac|''a''|''b''}}}} and {{math|{{sfrac|''c''|''d''}}}} are neighbours in a Farey sequence then the first term that appears between them as the order of the Farey sequence is incremented is <math display=block>\frac{a+c}{b+d},</math> which first appears in the Farey sequence of order {{math|''b'' + ''d''}}. Thus the first term to appear between {{sfrac|1|3}} and {{sfrac|2|5}} is {{sfrac|3|8}}, which appears in {{math|''F''<sub>8</sub>}}. The total number of Farey neighbour pairs in {{mvar|F<sub>n</sub>}} is {{math|2{{abs|''F<sub>n</sub>''}} − 3}}. The ''[[Stern–Brocot tree]]'' is a data structure showing how the sequence is built up from 0 {{pars|{{=}} {{sfrac|0|1}}|150%}} and 1 {{pars|{{=}} {{sfrac|1|1}}|150%}}, by taking successive mediants. ==== Equivalent-area interpretation ==== Every consecutive pair of Farey rationals have an equivalent area of 1.<ref name=Austin2008>{{cite web |last1=Austin |first1=David |date=December 2008 |title=Trees, Teeth, and Time: The mathematics of clock making |website=[[American Mathematical Society]] |location=Rhode Island |language=en |url=http://www.ams.org/publicoutreach/feature-column/fcarc-stern-brocot |access-date=28 September 2020 |url-status=live |archive-url=https://web.archive.org/web/20200204014725/http://www.ams.org/publicoutreach/feature-column/fcarc-stern-brocot |archive-date=4 February 2020}}</ref> See this by interpreting consecutive rationals <math display=block>r_1 = \frac{p}{q} \qquad r_2 = \frac{p'}{q'}</math> as vectors {{math|(''p'', ''q'')}} in the xy-plane. The area is given by <math display=block>A \left(\frac{p}{q}, \frac{p'}{q'} \right) = qp' - q'p.</math> As any added fraction in between two previous consecutive Farey sequence fractions is calculated as the [[Mediant (mathematics)|mediant]] (⊕), then <math display=block>\begin{align} A(r_1, r_1 \oplus r_2) &= A(r_1, r_1) + A(r_1, r_2) \\ &= A(r_1, r_2) \\ &= 1 \end{align}</math> (since {{math|1=''r''<sub>1</sub> = {{sfrac|1|0}}}} and {{math|1=''r''<sub>2</sub> = {{sfrac|0|1}}}}, its area must be 1). ===Farey neighbours and continued fractions=== Fractions that appear as neighbours in a Farey sequence have closely related [[continued fraction]] expansions. Every fraction has two continued fraction expansions — in one the final term is 1; in the other the final term is greater by 1. If {{math|{{sfrac|''p''|''q''}}}}, which first appears in Farey sequence {{mvar|F<sub>q</sub>}}, has the [[simple continued fraction|continued fraction expansion]]s <math display=block>\begin{align} &[0;\ a_1,\ a_2,\ \ldots,\ a_{n-1},\ a_n,\ 1] \\{} &[0;\ a_1,\ a_2,\ \ldots,\ a_{n-1},\ a_n + 1] \end{align}</math> then the nearest neighbour of {{math|{{sfrac|''p''|''q''}}}} in {{mvar|F{{sub|q}}}} (which will be its neighbour with the larger denominator) has a continued fraction expansion <math display=block>[0;\ a_1,\ a_2,\ \ldots,\ a_n]</math> and its other neighbour has a continued fraction expansion <math display=block>[0;\ a_1,\ a_2,\ \ldots,\ a_{n-1}]</math> For example, {{sfrac|3|8}} has the two continued fraction expansions {{math|[0; 2, 1, 1, 1]}} and {{math|[0; 2, 1, 2]}}, and its neighbours in {{math|''F''<sub>8</sub>}} are {{sfrac|2|5}}, which can be expanded as {{math|[0; 2, 1, 1]}}; and {{sfrac|1|3}}, which can be expanded as {{math|[0; 2, 1]}}. ===Farey fractions and the least common multiple=== The [[Least common multiple|lcm]] can be expressed as the products of Farey fractions as <math display=block> \text{lcm}[1,2,...,N] = e^{\psi(N)} = \frac{1}{2} \left( \prod_{r \in F_N, 0<r \le 1/2} 2 \sin(\pi r) \right)^2 </math> where {{math|''ψ''(''N'')}} is the second [[Chebyshev function]].<ref>{{Cite arXiv |eprint = 0907.4384|last1 = Martin|first1 = Greg|title = A product of Gamma function values at fractions with the same denominator|class = math.CA|year = 2009}}</ref><ref>{{Cite arXiv |eprint=0909.1838 |last1=Wehmeier |first1=Stefan |title=The LCM(1,2,...,n) as a product of sine values sampled over the points in Farey sequences |class=math.CA |year=2009}}</ref> ===Farey fractions and the greatest common divisor=== Since the [[Euler's totient function]] is directly connected to the [[Greatest common divisor|gcd]] so is the number of elements in {{mvar|F<sub>n</sub>}}, <math display=block>|F_n| = 1 + \sum_{m=1}^n \varphi(m) = 1+ \sum\limits_{m=1}^{n} \sum\limits_{k=1}^m \gcd(k,m) \cos {2\pi\frac{k}{m}} .</math> For any 3 Farey fractions {{math|{{sfrac|''a''|''b''}}, {{sfrac|''c''|''d''}}, {{sfrac|''e''|''f''}}}} the following identity between the [[Greatest common divisor|gcd]]'s of the 2x2 [[matrix determinant]]s in absolute value holds:<ref name=TomasGarcia2020>{{cite journal |last=Tomas Garcia |first=Rogelio |url=http://rtomas.web.cern.ch/rtomas/NNTDM-26-3-005-007.pdf|title=Equalities between greatest common divisors involving three coprime pairs| journal=Notes on Number Theory and Discrete Mathematics |date=August 2020 |volume=26 |issue=3|pages=5–7 |doi= 10.7546/nntdm.2020.26.3.5-7 |s2cid=225280271 |doi-access=free <!-- |access-date=20 January 2022 --> }}</ref> <math display=block> \gcd\left(\begin{Vmatrix} a & c\\b & d \end{Vmatrix}, \begin{Vmatrix} a & e\\b & f \end{Vmatrix} \right) = \gcd\left(\begin{Vmatrix} a & c\\b & d \end{Vmatrix}, \begin{Vmatrix} c & e\\d & f \end{Vmatrix} \right) = \gcd\left(\begin{Vmatrix} a & e\\b & f \end{Vmatrix}, \begin{Vmatrix} c & e\\d & f \end{Vmatrix} \right) </math> <ref name=Tomas2018>{{cite journal |last=Tomas |first=Rogelio |url=https://cs.uwaterloo.ca/journals/JIS/VOL25/Tomas/tomas5.pdf|title=Partial Franel sums | journal=Journal of Integer Sequences | date=January 2022 |volume=25 |issue=1 <!-- |access-date=16 January 2022 --> }}</ref> ===Applications=== Farey sequences are very useful to find rational approximations of irrational numbers.<ref>{{cite web |url=https://nrich.maths.org/6596 |title=Farey Approximation |website=NRICH.maths.org |access-date=18 November 2018 |archive-url=https://web.archive.org/web/20181119092100/https://nrich.maths.org/6596 |archive-date=19 November 2018 |url-status=dead}}</ref> For example, the construction by Eliahou<ref>{{cite journal |last1=Eliahou |first1=Shalom |title=The 3x+1 problem: new lower bounds on nontrivial cycle lengths |journal=Discrete Mathematics |date=August 1993 |volume=118 |issue=1–3 |pages=45–56 |doi=10.1016/0012-365X(93)90052-U|doi-access=free }}</ref> of a lower bound on the length of non-trivial cycles in the [[Collatz conjecture#Cycles|3''x''+1 process]] uses Farey sequences to calculate a continued fraction expansion of the number {{math|log<sub>2</sub>(3)}}. In physical systems with resonance phenomena, Farey sequences provide a very elegant and efficient method to compute resonance locations in 1D<ref>{{cite journal |last1=Zhenhua Li |first1=A. |last2=Harter |first2=W.G. |arxiv=1308.4470 |title=Quantum Revivals of Morse Oscillators and Farey–Ford Geometry |journal=Chem. Phys. Lett. |year=2015 |volume=633 |pages=208–213 |doi=10.1016/j.cplett.2015.05.035|bibcode=2015CPL...633..208L |s2cid=66213897 }}</ref> and 2D.<ref>{{cite journal |last1=Tomas |first1=R. |year=2014 |doi=10.1103/PhysRevSTAB.17.014001|title=From Farey sequences to resonance diagrams |journal=Physical Review Special Topics - Accelerators and Beams |volume=17 |issue=1 |page=014001|bibcode=2014PhRvS..17a4001T |doi-access=free |url=http://cds.cern.ch/record/2135825/files/10.1103_PhysRevSTAB.17.014001.pdf }}</ref> Farey sequences are prominent in studies of [[any-angle path planning]] on square-celled grids, for example in characterizing their computational complexity<ref>{{cite journal |last1=Harabor |first1=Daniel Damir |last2=Grastien |first2=Alban |last3=Öz |first3=Dindar |last4=Aksakalli |first4=Vural |title=Optimal Any-Angle Pathfinding In Practice |journal=Journal of Artificial Intelligence Research |date=26 May 2016 |volume=56 |pages=89–118 |doi=10.1613/jair.5007|doi-access=free }}</ref> or optimality.<ref>{{cite journal |last1=Hew |first1=Patrick Chisan |title=The Length of Shortest Vertex Paths in Binary Occupancy Grids Compared to Shortest ''r''-Constrained Ones |journal=Journal of Artificial Intelligence Research |date=19 August 2017 |volume=59 |pages=543–563 |doi=10.1613/jair.5442|doi-access=free }}</ref> The connection can be considered in terms of {{mvar|r}}-constrained paths, namely paths made up of line segments that each traverse at most {{mvar|r}} rows and at most {{mvar|r}} columns of cells. Let {{mvar|Q}} be the set of vectors {{math|(''q'', ''p'')}} such that <math>1 \leq q \leq r</math>, <math>0 \leq p \leq q</math>, and {{mvar|p}}, {{mvar|q}} are coprime. Let {{mvar|Q*}} be the result of reflecting {{mvar|Q}} in the line {{math|1=''y'' = ''x''}}. Let <math>S = \{ (\pm x, \pm y) : (x, y) \in Q \cup Q* \}</math>. Then any {{mvar|r}}-constrained path can be described as a sequence of vectors from {{mvar|S}}. There is a bijection between {{mvar|Q}} and the Farey sequence of order {{mvar|r}} given by {{math|(''q'', ''p'')}} mapping to <math>\tfrac{p}{q}</math>. ===Ford circles=== [[File:Comparison_Ford_circles_Farey_diagram.svg|thumb|250px|link={{filepath:Comparison Ford circles Farey diagram.svg}}|Comparison of Ford circles and a Farey diagram with circular arcs for ''n'' from 1 to 9. Each arc intersects its corresponding circles at right angles. In [[Media:Comparison Ford circles Farey diagram.svg|the SVG image]], hover over a circle or curve to highlight it and its terms.]] There is a connection between Farey sequence and [[Ford circle]]s. For every fraction {{math|{{sfrac|''p''|''q''}}}} (in its lowest terms) there is a Ford circle {{math|''C''[''p''/''q'']}}, which is the circle with radius <math>\tfrac{1}{2q^2}</math> and centre at <math>\bigl(\tfrac{p}{q}, \tfrac{1}{2q^2}\bigr).</math> Two Ford circles for different fractions are either [[Disjoint sets|disjoint]] or they are [[tangent]] to one another—two Ford circles never intersect. If {{math|0 < {{sfrac|''p''|''q''}} < 1}} then the Ford circles that are tangent to {{math|''C''[''p''/''q'']}} are precisely the Ford circles for fractions that are neighbours of {{math|{{sfrac|''p''|''q''}}}} in some Farey sequence. Thus {{math|''C''[2/5]}} is tangent to {{math|''C''[1/2]}}, {{math|''C''[1/3]}}, {{math|''C''[3/7]}}, {{math|''C''[3/8]}}, etc. Ford circles appear also in the [[Apollonian gasket]] {{math|(0,0,1,1)}}. The picture below illustrates this together with Farey resonance lines.<ref name=Tomas2020>{{cite arXiv |last=Tomas |first=Rogelio |eprint=2006.10661|title=Imperfections and corrections |class= physics.acc-ph|year=2020 <!-- |access-date=4 July 2020 --> }}</ref> [[File:Apolloinan gasket Farey.png|650px|thumb|center|[[Apollonian gasket]] {{math|(0,0,1,1)}} and the Farey resonance diagram.]] ===Riemann hypothesis=== Farey sequences are used in two equivalent formulations of the [[Riemann hypothesis]]. Suppose the terms of {{mvar|F{{sub|n}}}} are <math>\{a_{k,n} : k = 0, 1, \ldots, m_n\}.</math> Define <math>d_{k,n} = a_{k,n} - \tfrac{k}{m_n},</math> in other words <math>d_{k,n}</math> is the difference between the {{mvar|k}}th term of the {{mvar|n}}th Farey sequence, and the {{mvar|k}}th member of a set of the same number of points, distributed evenly on the unit interval. In 1924 [[Jérôme Franel]]<ref>{{cite journal |author-link=Jérôme Franel |first=Jérôme |last=Franel |url=http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN00250653X |title=Les suites de Farey et le problème des nombres premiers |journal=Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen |series=Mathematisch-Physikalische Klasse |year=1924 |pages=198–201 |language=fr}}</ref> proved that the statement <math display=block>\sum_{k=1}^{m_n} d_{k,n}^2 = O (n^r) \quad \forall r > -1</math> is equivalent to the Riemann hypothesis, and then [[Edmund Landau]]<ref>{{cite journal |author-link=Edmund Landau |first=Edmund |last=Landau |url=http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN002506548 |title=Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel |journal=Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen |series=Mathematisch-Physikalische Klasse |year=1924 |pages=202–206 |language=de}}</ref> remarked (just after Franel's paper) that the statement <math display=block>\sum_{k=1}^{m_n} |d_{k,n}| = O (n^r) \quad \forall r > \frac{1}{2}</math> is also equivalent to the Riemann hypothesis. === Other sums involving Farey fractions === The sum of all Farey fractions of order {{mvar|n}} is half the number of elements: <math display=block>\sum_{r\in F_n} r = \frac{1}{2} |F_n| .</math> The sum of the denominators in the Farey sequence is twice the sum of the numerators and relates to Euler's totient function: <math display=block>\sum_{a/b \in F_n} b = 2 \sum_{a/b \in F_n} a = 1 + \sum_{i=1}^{n} i\varphi(i) , </math> which was conjectured by Harold L. Aaron in 1962 and demonstrated by Jean A. Blake in 1966.<ref>{{Cite journal|first1=Jean A.|last1=Blake|doi=10.2307/2313922 |title=Some Characteristic Properties of the Farey Series|journal=The American Mathematical Monthly| volume=73|issue=1|year=1966|pages=50–52 |jstor=2313922 }}</ref> A one line proof of the Harold L. Aaron conjecture is as follows. The sum of the numerators is <math display=block>1 + \sum_{2 \le b \le n} \ \sum_{(a,b)=1} a = 1 + \sum_{2 \le b \le n} b\frac{\varphi(b)}{2}.</math> The sum of denominators is <math display=block>2 + \sum_{2 \le b \le n} \ \sum_{(a,b)=1} b = 2 + \sum_{2 \le b \le n} b\varphi(b).</math> The quotient of the first sum by the second sum is {{sfrac|1|2}}. Let {{mvar|b<sub>j</sub>}} be the ordered denominators of {{mvar|F<sub>n</sub>}}, then:<ref>{{Cite journal |jstor=10.4169/000298910X475005 |doi=10.4169/000298910X475005 |title=Farey Sums and Dedekind Sums |journal=The American Mathematical Monthly |volume=117 |issue=1 |pages=72–78 |year=2010 |last1=Kurt Girstmair |last2=Girstmair |first2=Kurt|s2cid=31933470 }}</ref> <math display=block>\sum_{j=0}^{|F_n|-1} \frac{b_j}{b_{j+1}} = \frac{3|F_n|-4}{2} </math> and <math display=block>\sum_{j=0}^{|F_n|-1} \frac{1}{b_{j+1}b_{j}} = 1.</math> Let <math>\tfrac{a_j}{b_j}</math> the {{mvar|j}}th Farey fraction in {{mvar|F<sub>n</sub>}}, then <math display=block> \sum_{j=1}^{|F_n|-1} (a_{j-1}b_{j+1} - a_{j+1}b_{j-1}) = \sum_{j=1}^{|F_n|-1} \begin{Vmatrix} a_{j-1} & a_{j+1} \\ b_{j-1} & b_{j+1} \end{Vmatrix} = 3(|F_n|-1) - 2n - 1, </math> which is demonstrated in.<ref>{{cite journal|first1=R. R. |last1=Hall |first2= P. |last2=Shiu |title= The Index of a Farey Sequence|journal= Michigan Math. J. | volume=51 | year =2003| doi=10.1307/mmj/1049832901|number=1 |pages=209–223|doi-access=free }} </ref> Also according to this reference the term inside the sum can be expressed in many different ways: <math display=block> a_{j-1} b_{j+1} - a_{j+1} b_{j-1} = \frac{b_{j-1}+b_{j+1}}{b_{j}} = \frac{a_{j-1}+a_{j+1}}{a_{j}} = \left\lfloor\frac{n+ b_{j-1}}{b_{j}} \right\rfloor, </math> obtaining thus many different sums over the Farey elements with same result. Using the symmetry around 1/2 the former sum can be limited to half of the sequence as <math display=block>\sum_{j=1}^{\left\lfloor \frac{|F_n|}{2} \right\rfloor} (a_{j-1} b_{j+1} - a_{j+1} b_{j-1}) = \frac{3(|F_n|-1)}{2} - n - \left\lceil \frac{n}{2} \right\rceil , </math> The [[Mertens function]] can be expressed as a sum over Farey fractions as <math display=block>M(n)= -1+ \sum_{a\in \mathcal{F}_n} e^{2\pi i a}</math> where <math> \mathcal{F}_n</math> is the Farey sequence of order {{mvar|n}}. This formula is used in the proof of the [[#Riemann hypothesis|Franel–Landau theorem]].<ref>{{cite book|last1=Edwards |first1=Harold M. |author1-link=Harold Edwards (mathematician) |editor1-last=Smith|editor1-first=Paul A.|editor1-link=Paul Althaus Smith|editor2-last=Ellenberg|editor2-first=Samuel|editor2-link=Samuel Eilenberg|year=1974 |title=Riemann's Zeta Function |chapter=12.2 Miscellany. The Riemann Hypothesis and Farey Series |publisher=[[Academic Press]] |series=Pure and Applied Mathematics|pages=263{{ndash}}267 |location=New York |language=en |isbn=978-0-08-087373-2 |oclc=316553016 |chapter-url=https://archive.org/details/riemannszetafunc00edwa_0/page/262 |chapter-url-access=registration |access-date=30 September 2020}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)