Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fibonacci polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Identities== {{main|Lucas sequence}} As particular cases of Lucas sequences, Fibonacci polynomials satisfy a number of identities, such as<ref name=Springer/> :<math>F_{m+n}(x)=F_{m+1}(x)F_n(x)+F_m(x)F_{n-1}(x)\,</math> :<math>L_{m+n}(x)=L_m(x)L_n(x)-(-1)^nL_{m-n}(x)\,</math> :<math>F_{n+1}(x)F_{n-1}(x)- F_n(x)^2=(-1)^n\,</math> :<math>F_{2n}(x)=F_n(x)L_n(x).\,</math> Closed form expressions, similar to Binet's formula are:<ref name=Springer/> :<math>F_n(x)=\frac{\alpha(x)^n-\beta(x)^n}{\alpha(x)-\beta(x)},\,L_n(x)=\alpha(x)^n+\beta(x)^n,</math> where :<math>\alpha(x)=\frac{x+\sqrt{x^2+4}}{2},\,\beta(x)=\frac{x-\sqrt{x^2+4}}{2}</math> are the solutions (in ''t'') of :<math>t^2-xt-1=0.\,</math> For Lucas Polynomials ''n'' > 0, we have :<math>L_n(x)=\sum_{k=0}^{\lfloor n/2\rfloor} \frac{n}{n-k} \binom{n-k}{k} x^{n-2k}.</math> A relationship between the Fibonacci polynomials and the standard basis polynomials is given by<ref>A proof starts from page 5 in [https://web.archive.org/web/20170202051159/http://cmimc.org/Documents/Archive/AlgebraSolutions_2016.pdf Algebra Solutions Packet (no author)].</ref> :<math>x^n=F_{n+1}(x)+\sum_{k=1}^{\lfloor n/2\rfloor}(-1)^k\left[\binom nk-\binom n{k-1}\right]F_{n+1-2k}(x).</math> For example, :<math>x^4 = F_5(x)-3F_3(x)+2F_1(x)\,</math> :<math>x^5 = F_6(x)-4F_4(x)+5F_2(x)\,</math> :<math>x^6 = F_7(x)-5F_5(x)+9F_3(x)-5F_1(x)\,</math> :<math>x^7 = F_8(x)-6F_6(x)+14F_4(x)-14F_2(x)\,</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)