Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fibonacci sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Europe=== [[File:Liber abbaci magliab f124r.jpg|thumb|upright=1.25|A page of [[Fibonacci]]'s {{lang|la|[[Liber Abaci]]}} from the [[National Central Library (Florence)|Biblioteca Nazionale di Firenze]] showing (in box on right) 13 entries of the Fibonacci sequence:<br /> the indices from present to XII (months) as Latin ordinals and Roman numerals and the numbers (of rabbit pairs) as Hindu-Arabic numerals starting with 1, 2, 3, 5 and ending with 377.]] The Fibonacci sequence first appears in the book {{lang|la|[[Liber Abaci]]}} (''The Book of Calculation'', 1202) by [[Fibonacci]],{{Sfn|Sigler|2002|pp=404–405}}<ref>{{citation|url=https://www.math.utah.edu/~beebe/software/java/fibonacci/liber-abaci.html|title=Fibonacci's Liber Abaci (Book of Calculation)|date=13 December 2009|website=[[The University of Utah]]|access-date=28 November 2018}}</ref> where it is used to calculate the growth of rabbit populations.<ref>{{citation | last = Tassone | first = Ann Dominic | date = April 1967 | doi = 10.5951/at.14.4.0285 | issue = 4 | journal = The Arithmetic Teacher | jstor = 41187298 | pages = 285–288 | title = A pair of rabbits and a mathematician | volume = 14}}</ref> Fibonacci considers the growth of an idealized ([[biology|biologically]] unrealistic) [[rabbit]] population, assuming that: a newly born breeding pair of rabbits are put in a field; each breeding pair mates at the age of one month, and at the end of their second month they always produce another pair of rabbits; and rabbits never die, but continue breeding forever. Fibonacci posed the rabbit [[Mathematical problem|math problem]]: how many pairs will there be in one year? * At the end of the first month, they mate, but there is still only 1 pair. * At the end of the second month they produce a new pair, so there are 2 pairs in the field. * At the end of the third month, the original pair produce a second pair, but the second pair only mate to gestate for a month, so there are 3 pairs in all. * At the end of the fourth month, the original pair has produced yet another new pair, and the pair born two months ago also produces their first pair, making 5 pairs. At the end of the {{mvar|n}}-th month, the number of pairs of rabbits is equal to the number of mature pairs (that is, the number of pairs in month {{math|''n'' – 2}}) plus the number of pairs alive last month (month {{math|''n'' – 1}}). The number in the {{mvar|n}}-th month is the {{mvar|n}}-th Fibonacci number.<ref>{{citation | last = Knott | first = Ron | title = Fibonacci's Rabbits | url=http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html#Rabbits | publisher =[[University of Surrey]] Faculty of Engineering and Physical Sciences}}</ref> The name "Fibonacci sequence" was first used by the 19th-century number theorist [[Édouard Lucas]].<ref>{{Citation | first = Martin | last = Gardner | author-link = Martin Gardner |title=Mathematical Circus |publisher = The Mathematical Association of America |year=1996 |isbn= 978-0-88385-506-5 | quote = It is ironic that Leonardo, who made valuable contributions to mathematics, is remembered today mainly because a 19th-century French number theorist, Édouard Lucas... attached the name Fibonacci to a number sequence that appears in a trivial problem in Liber abaci | page = 153}}</ref> [[File:Fibonacci Rabbits.svg|left|thumb|upright=1.5|Solution to Fibonacci rabbit [[Mathematical problem|problem]]: In a growing idealized population, the number of rabbit pairs form the Fibonacci sequence. At ''the end of the n''th month, the number of pairs is equal to ''F<sub>n.</sub>'']] {{clear|left}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)