Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fluctuation–dissipation theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Thermal noise in a resistor=== In 1928, [[John Bertrand Johnson|John B. Johnson]] discovered and [[Harry Nyquist]] explained [[Johnson–Nyquist noise]]. With no applied current, the mean-square voltage depends on the resistance <math>R</math>, <math>k_\text{B} T</math>, and the bandwidth <math>\Delta\nu</math> over which the voltage is measured:<ref name="Blundell2009">{{cite book |last1=Blundell |first1=Stephen J. |last2=Blundell |first2=Katherine M. |title=Concepts in thermal physics |date=2009 |publisher=OUP Oxford}}</ref> <math display="block"> \langle V^2 \rangle \approx 4Rk_\text{B}T\,\Delta\nu. </math> [[File:JohnsonThermalNoise.png|thumb|A simple circuit for illustrating Johnson–Nyquist thermal noise in a resistor]] This observation can be understood through the lens of the fluctuation-dissipation theorem. Take, for example, a simple circuit consisting of a [[resistor]] with a resistance <math>R</math> and a [[capacitor]] with a small capacitance <math>C</math>. [[Kirchhoff's circuit laws|Kirchhoff's]] voltage law yields <math display="block"> V = -R\frac{dQ}{dt}+\frac{Q}{C}, </math> and so the [[response function]] for this circuit is <math display="block"> \chi(\omega) \equiv \frac{Q(\omega)}{V(\omega)} = \frac{1}{\frac{1}{C} - i\omega R}. </math> In the low-frequency limit <math>\omega \ll (RC)^{-1}</math>, its imaginary part is simply <math display="block"> \operatorname{Im}\left[\chi(\omega)\right] \approx \omega RC^2, </math> which then can be linked to the power spectral density function <math>S_V(\omega)</math> of the voltage via the fluctuation-dissipation theorem: <math display="block"> S_V(\omega) = \frac{S_Q(\omega)}{C^2} \approx \frac{2k_\text{B}T}{C^2\omega} \operatorname{Im}\left[\chi(\omega)\right] = 2Rk_\text{B}T. </math> The Johnson–Nyquist voltage noise <math>\langle V^2 \rangle</math> was observed within a small frequency [[bandwidth (signal processing)|bandwidth]] <math>\Delta \nu = \Delta\omega/(2\pi)</math> centered around <math>\omega=\pm \omega_0</math>. Hence <math display="block"> \langle V^2 \rangle \approx S_V(\omega) \times 2\Delta \nu \approx 4Rk_\text{B}T\Delta \nu. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)