Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Forward rate
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Continuously compounded rate=== :<math>e^{r_2 \cdot t_2} = e^{r_1 \cdot t_1} \cdot \ e^{r_{1,2} \cdot \left(t_2 - t_1 \right)}</math> Solving for <math>r_{1,2}</math> yields: :'''STEP 1β''' <math>e^{r_2 \cdot t_2} = e^{r_1 \cdot t_1 + r_{1,2} \cdot \left(t_2 - t_1 \right)}</math> :'''STEP 2β''' <math>\ln \left(e^{r_2 \cdot t_2} \right) = \ln \left(e^{r_1 \cdot t_1 + r_{1,2} \cdot \left(t_2 - t_1 \right)}\right)</math> :'''STEP 3β''' <math>r_2 \cdot t_2 = r_1 \cdot t_1 + r_{1,2} \cdot \left(t_2 - t_1 \right)</math> :'''STEP 4β''' <math>r_{1,2} \cdot \left(t_2 - t_1 \right) = r_2 \cdot t_2 - r_1 \cdot t_1</math> :'''STEP 5β''' <math>r_{1,2} = \frac{ r_2 \cdot t_2 - r_1 \cdot t_1}{t_2 - t_1}</math> The discount factor formula for period (0,''t'') <math>\Delta_t</math> expressed in years, and rate <math>r_t</math> for this period being <math>DF(0, t)=e^{-r_t\,\Delta_t}</math>, the forward rate can be expressed in terms of discount factors: : <math>r_{1,2} = \frac{\ln \left(DF \left(0, t_1 \right)\right) - \ln \left(DF \left(0, t_2 \right)\right)}{t_2 - t_1} = \frac{- \ln \left( \frac{ DF \left(0, t_2 \right)}{ DF \left(0, t_1 \right)} \right)}{t_2 - t_1} </math> <math>r_{1,2} </math> is the forward rate between time <math> t_1 </math> and time <math> t_2 </math>, <math> r_k </math> is the zero-coupon yield for the time period <math> (0, t_k) </math>, (''k'' = 1,2).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)