Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Frame of reference
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Measurement apparatus == A further aspect of a frame of reference is the role of the [[metrology|measurement apparatus]] (for example, clocks and rods) attached to the frame (see Norton quote above). This question is not addressed in this article, and is of particular interest in [[Measurement in quantum mechanics|quantum mechanics]], where the relation between observer and measurement is still under discussion (see [[measurement problem]]). In physics experiments, the frame of reference in which the laboratory measurement devices are at rest is usually referred to as the [[laboratory frame]] or simply "lab frame." An example would be the frame in which the detectors for a particle accelerator are at rest. The lab frame in some experiments is an inertial frame, but it is not required to be (for example the laboratory on the surface of the Earth in many physics experiments is not inertial). In particle physics experiments, it is often useful to transform energies and momenta of particles from the lab frame where they are measured, to the [[center of momentum frame]] "COM frame" in which calculations are sometimes simplified, since potentially all kinetic energy still present in the COM frame may be used for making new particles. In this connection it may be noted that the clocks and rods often used to describe observers' measurement equipment in thought, in practice are replaced by a much more complicated and indirect [[metrology]] that is connected to the nature of the [[vacuum]], and uses [[atomic clocks]] that operate according to the [[standard model]] and that must be corrected for [[gravitational time dilation]].<ref name= Wolfson>{{cite book |author= Richard Wolfson |title=Simply Einstein |url=https://books.google.com/books?id=OUJWKdlFKeQC&q=%22gravitational+time+dilation+%22&pg=PA216|page=216 |isbn=0-393-05154-4 |publisher=W W Norton & Co. |year=2003}}</ref> (See [[second]], [[meter]] and [[kilogram]]). In fact, Einstein felt that clocks and rods were merely expedient measuring devices and they should be replaced by more fundamental entities based upon, for example, atoms and molecules.<ref name=Rizzi>See {{cite book |title=Relativity in rotating frames |page=33 |url=https://books.google.com/books?id=_PGrlCLkkIgC&q=centrifugal+%22+%22+relativity+OR+relativistic&pg=PA226 |isbn=1-4020-1805-3 |year=2003 |publisher=Springer |author1=Guido Rizzi |author2=Matteo Luca Ruggiero }}.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)