Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Galilean transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Origin in group contraction== The [[Lie algebra]] of the [[Representation theory of the Galilean group|Galilean group]] is [[linear span|spanned]] by {{math|''H'', ''P<sub>i</sub>'', ''C<sub>i</sub>''}} and {{math|''L<sub>ij</sub>''}} (an [[antisymmetric tensor]]), subject to [[commutator|commutation relations]], where :<math>[H,P_i]=0 </math> :<math>[P_i,P_j]=0 </math> :<math>[L_{ij},H]=0 </math> :<math>[C_i,C_j]=0 </math> :<math>[L_{ij},L_{kl}]=i [\delta_{ik}L_{jl}-\delta_{il}L_{jk}-\delta_{jk}L_{il}+\delta_{jl}L_{ik}] </math> :<math>[L_{ij},P_k]=i[\delta_{ik}P_j-\delta_{jk}P_i] </math> :<math>[L_{ij},C_k]=i[\delta_{ik}C_j-\delta_{jk}C_i] </math> :<math>[C_i,H]=i P_i \,\!</math> :<math>[C_i,P_j]=0 ~.</math> {{mvar|H}} is the generator of time translations ([[Hamiltonian (quantum mechanics)|Hamiltonian]]), {{math|''P<sub>i</sub>''}} is the generator of translations ([[momentum operator]]), {{math|''C<sub>i</sub>''}} is the generator of rotationless Galilean transformations (Galileian boosts),<ref>{{cite book |title=Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces |edition=illustrated |first1=A. A. |last1=Ungar |publisher=Springer Science & Business Media |year=2006 |isbn=978-0-306-47134-6 |page=336 |url=https://books.google.com/books?id=MTTaBwAAQBAJ}} [https://books.google.com/books?id=MTTaBwAAQBAJ&pg=PA336 Extract of page 336]</ref> and {{math|''L<sub>ij</sub>''}} stands for a generator of rotations ([[angular momentum operator]]). This Lie Algebra is seen to be a special [[classical limit]] of the algebra of the [[Poincaré group#Technical explanation|Poincaré group]], in the limit {{math|''c'' → ∞}}. Technically, the Galilean group is a celebrated [[group contraction]] of the Poincaré group (which, in turn, is a [[group contraction]] of the de Sitter group {{math|SO(1,4)}}).<ref>{{harvnb|Gilmore|2006}}</ref> Formally, renaming the generators of momentum and boost of the latter as in :{{math|''P''<sub>0</sub> ↦ ''H'' / ''c''}} :{{math|''K<sub>i</sub>'' ↦ ''c'' ⋅ ''C<sub>i</sub>''}}, where {{math|''c''}} is the speed of light (or any unbounded function thereof), the commutation relations (structure constants) in the limit {{math|''c'' → ∞}} take on the relations of the former. Generators of time translations and rotations are identified. Also note the group invariants {{math|''L''<sub>''mn''</sub> ''L''<sup>''mn''</sup>}} and {{math|''P''<sub>''i''</sub> ''P''{{i sup|''i''}}}}. In matrix form, for {{math|1=''d'' = 3}}, one may consider the ''regular representation'' (embedded in {{math|GL(5; '''R''')}}, from which it could be derived by a single group contraction, bypassing the Poincaré group), : <math> iH= \left( {\begin{array}{ccccc} 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 0\\ \end{array} } \right) , \qquad </math> <math> i\vec{a}\cdot\vec{P}= \left( {\begin{array}{ccccc} 0&0&0&0 & a_1\\ 0&0&0&0 & a_2\\ 0&0&0&0 & a_3\\ 0 & 0 & 0 & 0& 0\\ 0 & 0 & 0 & 0 & 0\\ \end{array} } \right), \qquad </math> <math> i\vec{v}\cdot\vec{C}= \left( {\begin{array}{ccccc} 0 & 0 & 0 & v_1 & 0\\ 0 & 0 & 0 & v_2 & 0\\ 0 & 0 & 0 & v_3 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ \end{array} } \right), \qquad </math> <math> i \theta_i \epsilon^{ijk} L_{jk} = \left( {\begin{array}{ccccc} 0& \theta_3 & -\theta_2 & 0 & 0\\ -\theta_3 & 0 & \theta_1& 0 & 0\\ \theta_2 & -\theta_1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ \end{array} } \right ) ~. </math> The infinitesimal group element is then ::<math> G(R,\vec{v},\vec{a},s)=1\!\!1_5 + \left( {\begin{array}{ccccc} 0& \theta_3 & -\theta_2 & v_1& a_1\\ -\theta_3 & 0 & \theta_1& v_2 & a_2\\ \theta_2 & -\theta_1 & 0 & v_3 & a_3\\ 0 & 0 & 0 & 0 & s\\ 0 & 0 & 0 & 0 & 0\\ \end{array} } \right ) +\ ... ~. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)