Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gauss–Markov theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Proof== Let <math>\tilde\beta = Cy</math> be another linear estimator of <math> \beta </math> with <math>C = (X^\operatorname{T}X)^{-1}X^\operatorname{T} + D </math> where <math>D</math> is a <math>K \times n</math> non-zero matrix. As we're restricting to ''unbiased'' estimators, minimum mean squared error implies minimum variance. The goal is therefore to show that such an estimator has a variance no smaller than that of <math> \widehat\beta,</math> the OLS estimator. We calculate: :<math> \begin{align} \operatorname{E} \left[ \tilde\beta \right] &= \operatorname{E}[Cy] \\ &= \operatorname{E} \left [\left ((X^\operatorname{T}X)^{-1}X^\operatorname{T} + D \right )(X\beta + \varepsilon) \right ]\\ &= \left ((X^\operatorname{T}X)^{-1}X^\operatorname{T} + D \right )X\beta + \left ((X^\operatorname{T}X)^{-1}X^\operatorname{T} + D \right ) \operatorname{E}[\varepsilon] \\ &= \left ((X^\operatorname{T}X)^{-1}X^\operatorname{T} + D \right )X\beta && \operatorname{E}[\varepsilon] =0 \\ &= (X^\operatorname{T}X)^{-1}X^\operatorname{T}X\beta + DX\beta \\ &= (I_K + DX)\beta. \\ \end{align} </math> Therefore, since <math>\beta</math> is '''un'''observable, <math> \tilde\beta </math> is unbiased if and only if <math> DX = 0 </math>. Then: :<math> \begin{align} \operatorname{Var}\left(\tilde\beta\right) &= \operatorname{Var}(Cy) \\ &= C \text{ Var}(y)C^\operatorname{T} \\ &= \sigma^2 CC^\operatorname{T} \\ &= \sigma^2 \left ((X^\operatorname{T}X)^{-1}X^\operatorname{T} + D \right ) \left (X(X^\operatorname{T}X)^{-1} + D^\operatorname{T} \right ) \\ &= \sigma^2 \left ((X^\operatorname{T}X)^{-1}X^\operatorname{T}X(X^\operatorname{T}X)^{-1} + (X^\operatorname{T}X)^{-1}X^\operatorname{T}D^\operatorname{T} + DX(X^\operatorname{T}X)^{-1} + DD^\operatorname{T} \right) \\ &= \sigma^2(X^\operatorname{T}X)^{-1} + \sigma^2(X^\operatorname{T}X)^{-1} (DX)^\operatorname{T} + \sigma^2 DX (X^\operatorname{T}X)^{-1} + \sigma^2DD^\operatorname{T} \\ &= \sigma^2(X^\operatorname{T}X)^{-1}+ \sigma^2DD^\operatorname{T} && DX =0 \\ &= \operatorname{Var}\left(\widehat\beta\right) + \sigma^2DD^\operatorname{T} && \sigma^2(X^\operatorname{T}X)^{-1} = \operatorname{Var}\left(\widehat\beta\right) \end{align} </math> Since <math>DD^\operatorname{T}</math> is a positive semidefinite matrix, <math>\operatorname{Var}\left( \tilde \beta \right) </math> exceeds <math>\operatorname{Var}\left(\widehat\beta\right) </math> by a positive semidefinite matrix. ===Remarks on the proof=== As it has been stated before, the condition of <math> \operatorname{Var} \left( \tilde \beta \right)- \operatorname{Var} \left(\widehat\beta\right)</math> is a positive semidefinite matrix is equivalent to the property that the best linear unbiased estimator of <math> \ell^\operatorname{T}\beta </math> is <math> \ell^\operatorname{T}\widehat\beta </math> (best in the sense that it has minimum variance). To see this, let <math> \ell^\operatorname{T}\tilde\beta </math> another linear unbiased estimator of <math> \ell^\operatorname{T}\beta </math>. :<math> \begin{align} \operatorname{Var}\left(\ell^\operatorname{T}\tilde\beta\right) &= \ell^\operatorname{T} \operatorname{Var} \left(\tilde\beta\right) \ell \\ &=\sigma^2 \ell^\operatorname{T} (X^\operatorname{T}X)^{-1}\ell+\ell^\operatorname{T}DD^\operatorname{T}\ell \\ &= \operatorname{Var}\left(\ell^\operatorname{T}\widehat\beta\right)+(D^\operatorname{T}\ell)^\operatorname{T}(D^\operatorname{T}\ell) && \sigma^2 \ell^\operatorname{T} (X^\operatorname{T}X)^{-1}\ell = \operatorname{Var}\left(\ell^\operatorname{T}\widehat\beta\right) \\ &= \operatorname{Var}\left(\ell^\operatorname{T}\widehat\beta\right) +\|D^\operatorname{T}\ell\|\\ & \geq \operatorname{Var}\left(\ell^\operatorname{T}\widehat\beta\right) \end{align} </math> Moreover, equality holds if and only if <math> D^\operatorname{T}\ell=0 </math>. We calculate :<math> \begin{align} \ell^\operatorname{T}\tilde\beta &= \ell^\operatorname{T} \left (((X^\operatorname{T}X)^{-1}X^\operatorname{T} + D) Y \right ) && \text{ from above}\\ &= \ell^\operatorname{T}(X^\operatorname{T}X)^{-1}X^\operatorname{T}Y + \ell^\operatorname{T}DY \\ &= \ell^\operatorname{T}\widehat\beta +(D^\operatorname{T}\ell)^\operatorname{T} Y \\ &=\ell^\operatorname{T}\widehat\beta && D^\operatorname{T}\ell = 0 \end{align} </math> This proves that the equality holds if and only if <math> \ell^\operatorname{T}\tilde\beta=\ell^\operatorname{T}\widehat\beta </math> which gives the uniqueness of the OLS estimator as a BLUE.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)