Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gaussian integral
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===By Cartesian coordinates=== A different technique, which goes back to Laplace (1812),<ref name="york.ac.uk" /> is the following. Let <math display="block">\begin{align} y & = xs \\ dy & = x\,ds. \end{align}</math> Since the limits on {{mvar|s}} as {{math|''y'' β Β±β}} depend on the sign of {{mvar|x}}, it simplifies the calculation to use the fact that {{math|''e''<sup>β''x''<sup>2</sup></sup>}} is an [[even function]], and, therefore, the integral over all real numbers is just twice the integral from zero to infinity. That is, <math display="block">\int_{-\infty}^{\infty} e^{-x^2} \, dx = 2\int_{0}^{\infty} e^{-x^2}\,dx.</math> Thus, over the range of integration, {{math|''x'' β₯ 0}}, and the variables {{mvar|y}} and {{mvar|s}} have the same limits. This yields: <math display="block">\begin{align} I^2 &= 4 \int_0^\infty \int_0^\infty e^{-\left(x^2 + y^2\right)} dy\,dx \\[6pt] &= 4 \int_0^\infty \left( \int_0^\infty e^{-\left(x^2 + y^2\right)} \, dy \right) \, dx \\[6pt] &= 4 \int_0^\infty \left( \int_0^\infty e^{-x^2\left(1+s^2\right)} x\,ds \right) \, dx \\[6pt] \end{align}</math> Then, using [[Fubini's theorem]] to switch the [[order of integration (calculus)|order of integration]]: <math display="block">\begin{align} I^2 &= 4 \int_0^\infty \left( \int_0^\infty e^{-x^2\left(1 + s^2\right)} x \, dx \right) \, ds \\[6pt] &= 4 \int_0^\infty \left[ \frac{e^{-x^2\left(1+s^2\right)} }{-2 \left(1+s^2\right)} \right]_{x=0}^{x=\infty} \, ds \\[6pt] &= 4 \left (\frac{1}{2} \int_0^\infty \frac{ds}{1+s^2} \right) \\[6pt] &= 2 \arctan(s)\Big |_0^\infty \\[6pt] &= \pi. \end{align}</math> Therefore, <math>I = \sqrt{\pi}</math>, as expected.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)