Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gaussian orbital
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Molecular integrals== Taketa et al. (1966) presented the necessary mathematical equations for obtaining matrix elements in the Gaussian basis.<ref>{{cite journal|last=Taketa|first=Hiroshi|author2=Huzinaga, Sigeru |author3=O-ohata, Kiyosi |title=Gaussian-Expansion Methods for Molecular Integrals|journal=Journal of the Physical Society of Japan|year=1966|volume=21|issue=11|pages=2313–2324|doi=10.1143/JPSJ.21.2313|bibcode = 1966JPSJ...21.2313T }}</ref> Since then much work has been done to speed up the evaluation of these integrals which are the slowest part of many quantum chemical calculations. Živković and Maksić (1968) suggested using [[Hermite]] Gaussian functions,<ref>{{cite journal|last=Živković|first=T.|author2=Maksić, Z. B.|title=Explicit Formulas for Molecular Integrals over Hermite-Gaussian Functions|journal=Journal of Chemical Physics|year=1968|volume=49|issue=7|pages=3083–3087|doi=10.1063/1.1670551 |bibcode = 1968JChPh..49.3083Z }}</ref> as this simplifies the equations. McMurchie and Davidson (1978) introduced recursion relations,<ref>{{cite journal|last=McMurchie|first=Larry E.|author2=Davidson, Ernest R.|title=One- and two-electron integrals over Cartesian Gaussian functions|journal=Journal of Computational Physics|year=1978|volume=26|issue=2|pages=218–31|doi=10.1016/0021-9991(78)90092-X|bibcode = 1978JCoPh..26..218M |url=https://digital.library.unt.edu/ark:/67531/metadc1057442/}}</ref> which greatly reduces the amount of calculations. [[John Pople|Pople]] and Hehre (1978) developed a local coordinate method.<ref>{{cite journal|last=Pople|first=J. A.|author2=Hehre, W. J.|title=Computation of electron repulsion integrals involving contracted Gaussian basis functions.|journal=J. Comput. Phys.|year=1978|volume=27|issue=2|pages=161–168|doi=10.1016/0021-9991(78)90001-3|bibcode = 1978JCoPh..27..161P }}</ref> Obara and Saika introduced efficient recursion relations in 1985,<ref>{{cite journal|last=Obara|first=S.|author2=Saika, A.|title=Efficient recursive computation of molecular integrals over Cartesian Gaussian functions|journal=J. Chem. Phys.|year=1986|volume=84|issue=7|pages=3963–74|doi=10.1063/1.450106|bibcode = 1986JChPh..84.3963O }}</ref> which was followed by the development of other important recurrence relations. Gill and Pople (1990) introduced a 'PRISM' algorithm which allowed efficient use of 20 different calculation paths.<ref>{{cite journal|last=Gill|first=Peter M. W.|author2=Pople, John A.|title=The Prism Algorithm for Two-Electron Integrals|journal=International Journal of Quantum Chemistry|date=December 1991|volume=40|issue=6|pages=753–772|doi=10.1002/qua.560400605|url=http://rscweb.anu.edu.au/~pgill/papers/026PRISM.pdf|accessdate=17 June 2011}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)