Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gell-Mann matrices
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Commutation relations=== The 8 generators of SU(3) satisfy the [[commutator|commutation and anti-commutation relations]]<ref name="gellmann17">{{cite web |last1=Haber |first1=Howard |title=Properties of the Gell-Mann matrices |url=http://scipp.ucsc.edu/~haber/ph251/gellmann17.pdf |website=Physics 251 Group Theory and Modern Physics |publisher=U.C. Santa Cruz |access-date=1 April 2019}}</ref> : <math> \begin{align} \left[ \lambda_a, \lambda_b \right] &= 2 i \sum_c f^{abc} \lambda_c, \\ \{ \lambda_a, \lambda_b \} &= \frac{4}{3} \delta_{ab} I + 2 \sum_c d^{abc} \lambda_c, \end{align} </math> with the [[structure constant]]s : <math> \begin{align} f^{abc} &= -\frac{1}{4} i \operatorname{tr}(\lambda_a [ \lambda_b, \lambda_c ]), \\ d^{abc} &= \frac{1}{4} \operatorname{tr}(\lambda_a \{ \lambda_b, \lambda_c \}). \end{align} </math> The [[structure constant]]s <math>d^{abc}</math> are completely symmetric in the three indices. The [[structure constant]]s <math>f^{abc}</math> are completely antisymmetric in the three indices, generalizing the antisymmetry of the [[Levi-Civita symbol]] <math>\epsilon_{jkl}</math> of {{math|''SU''(2)}}. For the present order of Gell-Mann matrices they take the values :<math>f^{123} = 1 \ , \quad f^{147} = f^{165} = f^{246} = f^{257} = f^{345} = f^{376} = \frac{1}{2} \ , \quad f^{458} = f^{678} = \frac{\sqrt{3}}{2} \ . </math> In general, they evaluate to zero, unless they contain an odd count of indices from the set {2,5,7}, corresponding to the antisymmetric (imaginary) {{mvar|Ξ»}}s. Using these commutation relations, the product of Gell-Mann matrices can be written as : <math> \lambda_a \lambda_b = \frac{1}{2} ([\lambda_a,\lambda_b] + \{\lambda_a,\lambda_b\}) = \frac{2}{3} \delta_{ab} I + \sum_c \left(d^{abc} + i f^{abc}\right) \lambda_c , </math> where {{mvar|I}} is the identity matrix.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)