Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geometric Brownian motion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties of GBM== The above solution <math> S_t </math> (for any value of t) is a [[log-normal distribution|log-normally distributed]] [[random variable]] with [[expected value]] and [[variance]] given by<ref>{{Citation | title = Stochastic Differential Equations: An Introduction with Applications |publisher=Springer |author = Øksendal, Bernt K. | year = 2002 | pages = 326 | isbn = 3-540-63720-6 }}</ref> :<math>\operatorname{E}(S_t)= S_0e^{\mu t},</math> :<math>\operatorname{Var}(S_t)= S_0^2e^{2\mu t} \left( e^{\sigma^2 t}-1\right).</math> They can be derived using the fact that <math> Z_t = \exp\left(\sigma W_t - \frac{1}{2}\sigma^2 t\right) </math> is a [[martingale (probability theory)|martingale]], and that :<math> \operatorname{E}\left[ \exp\left(2\sigma W_t - \sigma^2 t\right) \mid \mathcal{F}_s\right] = e^{\sigma^2(t - s)} \exp\left(2\sigma W_s - \sigma^2 s\right),\quad \forall 0 \leq s < t. </math> The [[probability density function]] of <math> S_t </math> is: : <math>f_{S_t}(s; \mu, \sigma, t) = \frac{1}{\sqrt{2 \pi}}\, \frac{1}{s \sigma \sqrt{t}}\, \exp \left( -\frac{ \left( \ln s - \ln S_0 - \left( \mu - \frac{1}{2} \sigma^2 \right) t \right)^2}{2\sigma^2 t} \right).</math> {{Collapse top|title=Derivation of GBM probability density function}} To derive the probability density function for GBM, we must use the [[Fokker-Planck equation]] to evaluate the time evolution of the PDF: :<math>{\partial p\over{\partial t}} + {\partial\over{\partial S}}[\mu(t,S)p(t,S)] = {1\over{2}}{\partial^{2}\over{\partial S^{2}}}[\sigma^{2}(t,S)p(t,S)], \quad p(0,S) = \delta(S)</math> where <math>\delta(S)</math> is the [[Dirac delta function]]. To simplify the computation, we may introduce a logarithmic transform <math>x = \log (S/S_{0})</math>, leading to the form of GBM: :<math>dx = \left(\mu - {1\over{2}}\sigma^{2}\right)dt + \sigma dW</math> Then the equivalent Fokker-Planck equation for the evolution of the PDF becomes: :<math>{\partial p\over{\partial t}} + \left(\mu - {1\over{2}}\sigma^{2}\right){\partial p\over{\partial x}} = {1\over{2}}\sigma^{2}{\partial^{2}p\over{\partial x^{2}}}, \quad p(0,x) = \delta(x) </math> Define <math>V=\mu-\sigma^{2}/2</math> and <math>D=\sigma^{2}/2</math>. By introducing the new variables <math>\xi = x-Vt</math> and <math>\tau = Dt</math>, the derivatives in the Fokker-Planck equation may be transformed as: :<math>\begin{aligned}\partial_{t}p &= D\partial_{\tau}p - V\partial_{\xi}p \\ \partial_{x}p &= \partial_{\xi}p \\ \partial_{x}^{2}p &= \partial_{\xi}^{2}p \end{aligned}</math> Leading to the new form of the Fokker-Planck equation: :<math>{\partial p\over{\partial\tau}} = {\partial^{2}p\over{\partial \xi^{2}}}, \quad p(0,\xi) = \delta(\xi)</math> However, this is the canonical form of the [[heat equation]]. which has the solution given by the [[heat kernel]]: :<math>p(\tau,\xi) = {1\over{\sqrt{4\pi \tau}}}\exp\left(-{\xi^{2}\over{4\tau}} \right)</math> Plugging in the original variables leads to the PDF for GBM: :<math>p(t,S) = {1\over{S\sqrt{2\pi \sigma^{2}t}}}\exp\left\{-{\left[\log(S/S_{0})-\left( \mu - {1\over{2}}\sigma^{2}\right)t \right]^{2}\over{2\sigma^{2}t}} \right\}</math> {{Collapse bottom}} When deriving further properties of GBM, use can be made of the SDE of which GBM is the solution, or the explicit solution given above can be used. For example, consider the stochastic process log(''S''<sub>''t''</sub>). This is an interesting process, because in the Black–Scholes model it is related to the [[log return]] of the stock price. Using [[Itô's lemma]] with ''f''(''S'') = log(''S'') gives :<math> \begin{alignat}{2} d\log(S) & = f'(S)\,dS + \frac{1}{2} f'' (S)S^2\sigma^2 \, dt \\[6pt] & = \frac{1}{S} \left( \sigma S\,dW_t + \mu S\,dt\right) - \frac{1}{2}\sigma^2\,dt \\[6pt] &= \sigma\,dW_t +(\mu-\sigma^2/2)\,dt. \end{alignat} </math> It follows that <math>\operatorname{E} \log(S_t)=\log(S_0)+(\mu-\sigma^2/2)t</math>. This result can also be derived by applying the logarithm to the explicit solution of GBM: :<math> \begin{alignat}{2} \log(S_t) &=\log\left(S_0\exp\left(\left(\mu - \frac{\sigma^2}{2} \right)t + \sigma W_t\right)\right)\\[6pt] & =\log(S_0) +\left(\mu - \frac{\sigma^2}{2} \right)t + \sigma W_t. \end{alignat} </math> Taking the expectation yields the same result as above: <math>\operatorname{E} \log(S_t)=\log(S_0)+(\mu-\sigma^2/2)t </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)