Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geometric distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Moments and cumulants=== The [[expected value]] and [[variance]] of a geometrically distributed [[random variable]] <math>X</math> defined over <math>\mathbb{N}</math> is<ref name=":1" />{{Rp|page=261}}<math display="block">\operatorname{E}(X) = \frac{1}{p}, \qquad\operatorname{var}(X) = \frac{1-p}{p^2}.</math> With a geometrically distributed random variable <math>Y</math> defined over <math>\mathbb{N}_0</math>, the expected value changes into<math display="block">\operatorname{E}(Y) = \frac{1-p} p,</math>while the variance stays the same.<ref name=":0">{{Cite book |last1=Forbes |first1=Catherine |url=https://onlinelibrary.wiley.com/doi/book/10.1002/9780470627242 |title=Statistical Distributions |last2=Evans |first2=Merran |last3=Hastings |first3=Nicholas |last4=Peacock |first4=Brian |date=2010-11-29 |publisher=Wiley |isbn=978-0-470-39063-4 |edition=1st |pages= |language=en |doi=10.1002/9780470627242}}</ref>{{Rp|pages=114β115}} For example, when rolling a six-sided die until landing on a "1", the average number of rolls needed is <math>\frac{1}{1/6} = 6</math> and the average number of failures is <math>\frac{1 - 1/6}{1/6} = 5</math>. The [[Moment-generating function|moment generating function]] of the geometric distribution when defined over <math> \mathbb{N} </math> and <math>\mathbb{N}_0</math> respectively is<ref>{{Cite book |last1=Bertsekas |first1=Dimitri P. |url=https://archive.org/details/introductiontopr0000bert_p5i9_2ndedi |title=Introduction to probability |last2=Tsitsiklis |first2=John N. |publisher=Athena Scientific |year=2008 |isbn=978-1-886529-23-6 |edition=2nd |series=Optimization and computation series |location=Belmont |page=235 |language=en}}</ref><ref name=":0" />{{Rp|page=114}}<math display="block">\begin{align} M_X(t) &= \frac{pe^t}{1-(1-p)e^t} \\ M_Y(t) &= \frac{p}{1-(1-p)e^t}, t < -\ln(1-p) \end{align}</math>The moments for the number of failures before the first success are given by : <math> \begin{align} \mathrm{E}(Y^n) & {} =\sum_{k=0}^\infty (1-p)^k p\cdot k^n \\ & {} =p \operatorname{Li}_{-n}(1-p) & (\text{for }n \neq 0) \end{align} </math> where <math> \operatorname{Li}_{-n}(1-p) </math> is the [[Polylogarithm|polylogarithm function]].<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Geometric Distribution |url=https://mathworld.wolfram.com/ |access-date=2024-07-13 |website=[[MathWorld]] |language=en}}</ref> The [[cumulant generating function]] of the geometric distribution defined over <math>\mathbb{N}_0</math> is<ref name=":8" />{{Rp|page=216}} <math display="block">K(t) = \ln p - \ln (1 - (1-p)e^t)</math>The [[cumulant]]s <math>\kappa_r</math> satisfy the recursion<math display="block">\kappa_{r+1} = q \frac{\delta\kappa_r}{\delta q}, r=1,2,\dotsc</math>where <math>q = 1-p</math>, when defined over <math>\mathbb{N}_0</math>.<ref name=":8" />{{Rp|page=216}} ==== Proof of expected value ==== Consider the expected value <math>\mathrm{E}(X)</math> of ''X'' as above, i.e. the average number of trials until a success. The first trial either succeeds with probability <math>p</math>, or fails with probability <math>1-p</math>. If it fails, the '''remaining''' mean number of trials until a success is identical to the original mean - this follows from the fact that all trials are independent. From this we get the formula: : <math>\operatorname \mathrm{E}(X) = p + (1-p)(1 + \mathrm{E}[X]) ,</math> which, when solved for <math> \mathrm{E}(X) </math>, gives: : <math>\operatorname E(X) = \frac{1}{p}.</math> The expected number of '''failures''' <math>Y</math> can be found from the [[linearity of expectation]], <math>\mathrm{E}(Y) = \mathrm{E}(X-1) = \mathrm{E}(X) - 1 = \frac 1 p - 1 = \frac{1-p}{p}</math>. It can also be shown in the following way: : <math> \begin{align} \operatorname E(Y) & =p\sum_{k=0}^\infty(1-p)^k k \\ & = p (1-p) \sum_{k=0}^\infty (1-p)^{k-1} k\\ & = p (1-p) \left(-\sum_{k=0}^\infty \frac{d}{dp}\left[(1-p)^k\right]\right) \\ & = p (1-p) \left[\frac{d}{dp}\left(-\sum_{k=0}^\infty (1-p)^k\right)\right] \\ & = p(1-p)\frac{d}{dp}\left(-\frac{1}{p}\right) \\ & = \frac{1-p}{p}. \end{align} </math> The interchange of summation and differentiation is justified by the fact that convergent [[power series]] [[uniform convergence|converge uniformly]] on [[compact space|compact]] subsets of the set of points where they converge.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)