Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Global warming potential
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Current values (IPCC Sixth Assessment Report from 2021) === [[File:Global-warming-potential-of-greenhouse-gases-over-100-year-timescale-gwp (OWID 0525).png|thumb|Global warming potential of five greenhouse gases over 100-year timescale.<ref>{{Cite web |title=Global warming potential of greenhouse gases relative to CO2 |url=https://ourworldindata.org/grapher/global-warming-potential-of-greenhouse-gases-over-100-year-timescale-gwp |access-date=2023-12-18 |website=Our World in Data}}</ref>]]The global warming potential (GWP) depends on both the efficiency of the molecule as a greenhouse gas and its atmospheric lifetime. GWP is measured relative to the same mass of {{CO2}} and evaluated for a specific timescale.<ref name=":02">IPCC, 2021: [https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_AnnexVII.pdf Annex VII: Glossary] [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte, C. Méndez, S. Semenov, A. Reisinger (eds.)]. In [https://www.ipcc.ch/report/ar6/wg1/ Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change] [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256, [[doi:10.1017/9781009157896.022]].</ref> Thus, if a gas has a high (positive) radiative forcing but also a short lifetime, it will have a large GWP on a 20-year scale but a small one on a 100-year scale. Conversely, if a molecule has a longer atmospheric lifetime than {{CO2}} its GWP will increase when the timescale is considered. Carbon dioxide is defined to have a GWP of 1 over all time periods. Methane has an atmospheric lifetime of 12 ± 2 years.<ref name="ar6 WG1 Ch 7" />{{rp|Table 7.15}} The [[IPCC Sixth Assessment Report|2021 IPCC report]] lists the GWP as 83 over a time scale of 20 years, 30 over 100 years and 10 over 500 years.<ref name="ar6 WG1 Ch 7" />{{rp|Table 7.15}} The decrease in GWP at longer times is because [[Atmospheric methane#Removal processes|methane]] decomposes to water and {{CO2}} through chemical reactions in the atmosphere. Similarly the third most important GHG, [[nitrous oxide]] (N<sub>2</sub>O), is a common gas emitted through the [[denitrification]] part of the [[nitrogen cycle]].<ref>{{Cite journal |last1=Yang |first1=Rui |last2=Yuan |first2=Lin-jiang |last3=Wang |first3=Ru |last4=He |first4=Zhi-xian |last5=Lei |first5=Lin |last6=Ma |first6=Yan-chen |date=2022 |title=Analyzing the mechanism of nitrous oxide production in aerobic phase of anoxic/aerobic sequential batch reactor from the perspective of key enzymes |url=https://link.springer.com/10.1007/s11356-022-18800-3 |journal=Environmental Science and Pollution Research |language=en |volume=29 |issue=26 |pages=39877–39887 |doi=10.1007/s11356-022-18800-3 |pmid=35113372 |bibcode=2022ESPR...2939877Y |issn=0944-1344|url-access=subscription }}</ref> It has a lifetime of 109 years and an even higher GWP level running at 273 over 20 and 100 years. Examples of the atmospheric lifetime and GWP relative to {{CO2}} for several greenhouse gases are given in the following table: {| class="wikitable sortable" style="text-align: right" |+Atmospheric lifetime and global warming potential (GWP) relative to {{CO2}} at different time horizon for various greenhouse gases (more values provided at global warming potential) !Gas name !Chemical formula !Lifetime (years)<ref name="ar6 WG1 Ch 7" />{{rp|Table 7.15}}<ref name="TableOfWarmingPotentials5">{{cite book |title=Intergovernmental Panel on Climate Change Fifth Assessment Report |page=731 |chapter=Appendix 8.A |access-date=6 November 2017 |chapter-url=http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter08_FINAL.pdf |archive-url=https://web.archive.org/web/20171013100414/http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter08_FINAL.pdf |archive-date=13 October 2017 |url-status=live}}</ref> !Radiative Efficiency (Wm{{sup|−2}}ppb{{sup|−1}}, molar basis).<ref name="ar6 WG1 Ch 7" />{{rp|Table 7.15}}<ref name="TableOfWarmingPotentials5" /> !20 year GWP<ref name="ar6 WG1 Ch 7" />{{rp|Table 7.15}}<ref name="TableOfWarmingPotentials5" /> !100 year GWP<ref name="ar6 WG1 Ch 7" />{{rp|Table 7.15}}<ref name="TableOfWarmingPotentials5" /> !500 year GWP<ref name="ar6 WG1 Ch 7" />{{rp|Table 7.15}}<ref name="TableOfWarmingPotentials">{{cite book |title=IPCC Fourth Assessment Report |page=212 |chapter=Table 2.14 |access-date=16 December 2008 |chapter-url=http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf |archive-url=https://web.archive.org/web/20071215200559/http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf |archive-date=15 December 2007 |url-status=live}}</ref> |- | style="text-align:left;" |[[Carbon dioxide]] | style="text-align:center;" |{{CO2}} |<sup>(A)</sup> |{{val|1.37e-5}} |1 |1 |1 |- | style="text-align:left;" |[[Methane]] (fossil [[natural gas]]) | style="text-align:center;" |{{chem|CH|4}} |12 |{{val|5.7e-4}} |83 |30 |10 |- | style="text-align:left;" |[[Methane]] (pure non-fossil) | style="text-align:center;" |{{chem|CH|4}} |12 |{{val|5.7e-4}} |81 |27 |7.3 |- id="N2O" | style="text-align:left;" |[[Nitrous oxide]] | style="text-align:center;" |{{chem|N|2|O}} |109 |{{val|3e-3}} |273 |273 |130 |- | style="text-align:left;" |[[CFC-11]] (R-11) | style="text-align:center;" |{{chem|CCl|3|F}} |52 |{{val|0.29}} |8321 |6226 |2093 |- | style="text-align:left;" |[[CFC-12]] (R-12) | style="text-align:center;" |{{chem|CCl|2|F|2}} |100 |{{val|0.32}} |10800 |10200 |5200 |- | style="text-align:left;" |[[HCFC-22]] (R-22) | style="text-align:center;" |{{chem|CHClF|2}} |12 |{{val|0.21}} |5280 |1760 |549 |- | style="text-align:left;" |[[HFC-32]] (R-32) | style="text-align:center;" |{{chem|CH|2|F|2}} |5 |{{val|0.11}} |2693 |771 |220 |- | style="text-align:left;" |[[HFC-134a]] (R-134a) | style="text-align:center;" |{{chem|CH|2|FCF|3}} |14 |{{val|0.17}} |4144 |1526 |436 |- | style="text-align:left;" |[[Tetrafluoromethane]] (R-14) | style="text-align:center;" |{{chem|CF|4}} |50000 |{{val|0.09}} |5301 |7380 |10587 |- | style="text-align:left;" |[[Hexafluoroethane]] | style="text-align:center;" |{{chem|C|2|F|6}} |10000 |{{val|0.25}} |8210 |11100 |18200 |- | style="text-align:left;" |[[Sulfur hexafluoride]] | style="text-align:center;" |{{chem|SF|6}} |3200 |{{val|0.57}} |17500 |23500 |32600 |- | style="text-align:left;" |[[Nitrogen trifluoride]] | style="text-align:center;" |{{chem|NF|3}} |500 |{{val|0.20}} |12800 |16100 |20700 |- ! colspan="7" |<small><sup>(A)</sup> No single lifetime for atmospheric {{CO2}} can be given.</small> |} Estimates of GWP values over 20, 100 and 500 years are periodically compiled and revised in reports from the [[Intergovernmental Panel on Climate Change]]. The most recent report is the [[IPCC Sixth Assessment Report]] (Working Group I) from 2023.<ref name="ar6 WG1 Ch 7">Forster, P., T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, D.J. Lunt, T. Mauritsen, M.D. Palmer, M. Watanabe, M. Wild, and H. Zhang, 2021: [https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07.pdf Chapter 7: The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity]. In https://www.ipcc.ch/report/ar6/wg1/ [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 923–1054, doi:10.1017/9781009157896.009.</ref> The IPCC lists many other substances not shown here.<ref name="ar5">{{Harvnb|IPCC AR5 WG1 Ch8|2013|pages=714, 731}}.</ref><ref name="ar6 WG1 Ch 7" /><ref> {{cite web |title= IPCC Sixth Assessment Report: The Physical Science Basis Ch7.Supp Mat Table 7 |url=https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_FGD_Chapter07_SM.pdf |archive-url=https://web.archive.org/web/20240630195210/https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_FGD_Chapter07_SM.pdf |archive-date=30 June 2024}}</ref> Some have high GWP but only a low concentration in the atmosphere. The values given in the table assume the same mass of compound is analyzed; different ratios will result from the conversion of one substance to another. For instance, burning [[methane]] to carbon dioxide would reduce the global warming impact, but by a smaller factor than 25:1 because the mass of [[methane]] burned is less than the mass of [[carbon dioxide]] released (ratio 1:2.74).<ref>This is so, because of the reaction formula: CH<sub>4</sub> + 2O<sub>2</sub> → {{CO2}} + 2 H<sub>2</sub>O. As mentioned in the article, the oxygen and water is not considered for GWP purposes, and one molecule of methane (molar mass = 16.04 g mol<sup>−1</sup>) will yield one molecule of carbon dioxide (molar mass = 44.01 g mol<sup>−1</sup>). This gives a mass ratio of 2.74. (44.01/16.04 ≈ 2.74).</ref> For a starting amount of 1 tonne of methane, which has a GWP of 25, after combustion there would be 2.74 tonnes of {{CO2}}, each tonne of which has a GWP of 1. This is a net reduction of 22.26 tonnes of GWP, reducing the global warming effect by a ratio of 25:2.74 (approximately 9 times). {| class="wikitable sortable" ! rowspan="2" | Greenhouse gas ! rowspan="2" data-sort-type="number" | Lifetime <br />(years) ! colspan="3" | Global warming potential, GWP |- ! data-sort-type="number" | 20 years ! data-sort-type="number" | 100 years ! data-sort-type="number" | 500 years |- |[[Hydrogen]] (H<sub>2</sub>) |4–7<ref name=":3">{{Cite report |url=https://www.gov.uk/government/publications/atmospheric-implications-of-increased-hydrogen-use |title=Atmospheric implications of increased hydrogen use |last1=Warwick |first1=Nicola |last2=Griffiths |first2=Paul |date=2022-04-08 |publisher=UK Department for Business, Energy & Industrial Strategy (BEIS) |last3=Keeble |first3=James |last4=Archibald |first4=Alexander |last5=John |first5=Pile |ref={{Harvid|Warwick|2022}}}}</ref> | data-sort-value="33" | 33 (20–44)<ref name=":3" /> | data-sort-value="11" | 11 (6–16)<ref name=":3" />|| {{n/a}} |- |[[Methane]] ({{CH4}}) |11.8<ref name="ar6 WG1 Ch 7" /> | data-sort-value="70" |56<ref name="sar">{{Harvnb|IPCC SAR WG1 Ch2|1995|p=121}}.</ref><br />72<ref name="ar4">{{Harvnb|IPCC AR4 WG1 Ch2|2007|p=212}}.</ref><br />84 / 86f<ref name="ar5" /><br />96<ref>{{Cite journal |last=Alvarez |date=2018 |title=Assessment of methane emissions from the U.S. oil and gas supply chain |url=http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=924889 |journal=Science |volume=361 |issue=6398 |pages=186–188 |bibcode=2018Sci...361..186A |doi=10.1126/science.aar7204 |pmc=6223263 |pmid=29930092}}</ref><br />80.8 (biogenic)<ref name="ar6 WG1 Ch 7" /><br /> 82.5 (fossil)<ref name="ar6 WG1 Ch 7" /> | data-sort-value="30" |21<ref name="sar" /><br />25<ref name="ar4" /><br />28 / 34f<ref name="ar5" /><br />32<ref>{{cite journal |last1=Etminan |first1=M. |last2=Myhre |first2=G. |last3=Highwood |first3=E. J. |last4=Shine |first4=K. P. |date=28 December 2016 |title=Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing |journal=Geophysical Research Letters |volume=43 |issue=24 |bibcode=2016GeoRL..4312614E |doi=10.1002/2016GL071930 |doi-access=free}}</ref><br />39 (biogenic)<ref name=":4">{{cite news |last1=Morton |first1=Adam |date=26 August 2020 |title=Methane released in gas production means Australia's emissions may be 10% higher than reported |work=The Guardian |url=https://www.theguardian.com/environment/2020/aug/26/methane-released-in-gas-production-means-australias-emissions-may-be-10-higher-than-reported}}</ref><br />40 (fossil)<ref name=":4" /> | data-sort-value="7" |6.5<ref name="sar" /><br />7.6<ref name="ar4" /> |- |[[Nitrous oxide]] ({{N2O}}) |109<ref name="ar6 WG1 Ch 7" /> | data-sort-value="270" |280<ref name="sar" /><br />289<ref name="ar4" /><br />264 / 268f<ref name="ar5" /><br />273<ref name="ar6 WG1 Ch 7" /> | data-sort-value="300" |310<ref name="sar" /><br />298<ref name="ar4" /><br />265 / 298f<ref name="ar5" /><br />273<ref name="ar6 WG1 Ch 7" /> | data-sort-value="160" |170<ref name="sar" /><br />153<ref name="ar4" /><br />130<ref name="ar6 WG1 Ch 7" /> |- |[[HFC-134a]] ([[hydrofluorocarbon]]) |14.0<ref name="ar6 WG1 Ch 7" /> | data-sort-value="4000" |3,710 / 3,790f<ref name="ar5" /><br />4,144<ref name="ar6 WG1 Ch 7" /> | data-sort-value="1500" |1,300 / 1,550f<ref name="ar5" /><br />1,526<ref name="ar6 WG1 Ch 7" /> | data-sort-value="435" |435<ref name="ar4" /><br />436<ref name="ar6 WG1 Ch 7" /> |- |[[CFC-11]] ([[chlorofluorocarbon]]) |52.0<ref name="ar6 WG1 Ch 7" /> | data-sort-value="7000" |6,900 / 7,020f<ref name="ar5" /><br />8,321<ref name="ar6 WG1 Ch 7" /> | data-sort-value="5000" |4,660 / 5,350f<ref name="ar5" /><br />6,226<ref name="ar6 WG1 Ch 7" /> | data-sort-value="2000" |1,620<ref name="ar4" /><br />2,093<ref name="ar6 WG1 Ch 7" /> |- |[[Carbon tetrafluoride]] (CF{{sub|4}} / PFC-14) |50,000<ref name="ar6 WG1 Ch 7" /> | data-sort-value="5000" |4,880 / 4,950f<ref name="ar5" /><br />5,301<ref name="ar6 WG1 Ch 7" /> | data-sort-value="7000" |6,630 / 7,350f<ref name="ar5" /><br />7,380<ref name="ar6 WG1 Ch 7" /> | data-sort-value="11000" |11,200<ref name="ar4" /><br />10,587<ref name="ar6 WG1 Ch 7" /> |- | [[HFC-23]] ([[hydrofluorocarbon]]) |222<ref name="ar5" /> | data-sort-value="11000" |12,000<ref name="ar4" /><br />10,800<ref name="ar5" /> | data-sort-value="13000" |14,800<ref name="ar4" /><br />12,400<ref name="ar5" /> | data-sort-value="12200" |12,200<ref name="ar4" /> |- |[[Sulfur hexafluoride]] {{chem2|SF6}} |3,200<ref name="ar5" /> | data-sort-value="17000" |16,300<ref name="ar4" /><br />17,500<ref name="ar5" /> | data-sort-value="23000" |22,800<ref name="ar4" /><br />23,500<ref name="ar5" /> | data-sort-value="32600" |32,600<ref name="ar4" /> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)