Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Green's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Proof for rectifiable Jordan curves == We are going to prove the following {{math theorem|math_statement= Let <math>\Gamma</math> be a rectifiable, positively oriented [[Jordan curve theorem|Jordan curve]] in <math>\R^2</math> and let <math>R</math> denote its inner region. Suppose that <math>A, B:\overline{R} \to \R</math> are continuous functions with the property that <math>A</math> has second partial derivative at every point of <math>R</math>, <math>B</math> has first partial derivative at every point of <math>R</math> and that the functions <math>D_1 B, D_2 A : R \to \R</math> are Riemann-integrable over <math>R</math>. Then <math display="block">\int_{\Gamma}(A\,dx + B\,dy) = \int_R \left(D_1 B(x,y)-D_2 A(x,y)\right)\,d(x,y).</math>}} We need the following lemmas whose proofs can be found in:<ref>{{Cite book |last=Apostol |first=Tom |author-link=Tom M. Apostol |title=Mathematical Analysis |date=1960 |publisher=[[Addison-Wesley]] |location=Reading, Massachusetts, U.S.A. |oclc=6699164}}</ref> {{math theorem|name=Lemma 1 (Decomposition Lemma)|math_statement= Assume <math>\Gamma</math> is a rectifiable, positively oriented Jordan curve in the plane and let <math>R</math> be its inner region. For every positive real <math>\delta</math>, let <math>\mathcal{F}(\delta)</math> denote the collection of squares in the plane bounded by the lines <math>x=m\delta, y=m\delta</math>, where <math>m</math> runs through the set of integers. Then, for this <math>\delta</math>, there exists a decomposition of <math>\overline{R}</math> into a finite number of non-overlapping subregions in such a manner that <ol type="i"> <li>Each one of the subregions contained in <math>R</math>, say <math>R_1, R_2,\ldots, R_k</math>, is a square from <math>\mathcal{F}(\delta)</math>.</li> <li>Each one of the remaining subregions, say <math>R_{k+1},\ldots,R_s</math>, has as boundary a rectifiable Jordan curve formed by a finite number of arcs of <math>\Gamma</math> and parts of the sides of some square from <math>\mathcal{F}(\delta)</math>.</li> <li>Each one of the border regions <math>R_{k+1},\ldots,R_s</math> can be enclosed in a square of edge-length <math>2\delta</math>.</li> <li>If <math>\Gamma_i</math> is the positively oriented boundary curve of <math>R_i</math>, then <math>\Gamma=\Gamma_1+\Gamma_2+\cdots+\Gamma_s.</math></li> <li>The number <math>s-k</math> of border regions is no greater than <math display="inline">4\!\left(\frac{\Lambda}{\delta} + 1\right)</math>, where <math>\Lambda</math> is the length of <math>\Gamma</math>.</li> </ol>}} {{math theorem|name=Lemma 2|math_statement= Let <math>\Gamma</math> be a rectifiable curve in the plane and let <math>\Delta_\Gamma(h)</math> be the set of points in the plane whose distance from (the range of) <math>\Gamma</math> is at most <math>h</math>. The outer Jordan content of this set satisfies <math>\overline{c}\,\,\Delta_\Gamma(h)\le2h\Lambda +\pi h^2</math>.}} {{math theorem|name=Lemma 3|math_statement= Let <math>\Gamma</math> be a rectifiable curve in <math>\R^2</math> and let <math>f:\text{range of }\Gamma \to \R</math> be a continuous function. Then <math display="block">\left\vert\int_\Gamma f(x,y)\,dy\right\vert \le\frac{1}{2} \Lambda\Omega_f,</math> and <math display="block">\left\vert\int_\Gamma f(x,y)\,dx\right\vert \le\frac{1}{2} \Lambda\Omega_f,</math> where <math>\Omega_f</math> is the oscillation of <math>f</math> on the range of <math>\Gamma</math>.}} Now we are in position to prove the theorem: '''Proof of Theorem.''' Let <math>\varepsilon</math> be an arbitrary positive real number. By continuity of <math>A</math>, <math>B</math> and compactness of <math>\overline{R}</math>, given <math>\varepsilon>0</math>, there exists <math>0<\delta<1</math> such that whenever two points of <math>\overline{R}</math> are less than <math>2\sqrt{2}\,\delta</math> apart, their images under <math>A, B</math> are less than <math>\varepsilon</math> apart. For this <math>\delta</math>, consider the decomposition given by the previous Lemma. We have <math display="block">\int_\Gamma A\,dx+B\,dy=\sum_{i=1}^k \int_{\Gamma_i} A\,dx+B\,dy\quad +\sum_{i=k+1}^s \int_{\Gamma_i}A\,dx+B\,dy.</math> Put <math>\varphi := D_1 B - D_2 A</math>. For each <math>i\in\{1,\ldots,k\}</math>, the curve <math>\Gamma_i</math> is a positively oriented square, for which Green's formula holds. Hence <math display="block">\sum_{i=1}^k \int_{\Gamma_i}A\,dx + B\,dy =\sum_{i=1}^k \int_{R_i} \varphi = \int_{\bigcup_{i=1}^k R_i}\,\varphi.</math> Every point of a border region is at a distance no greater than <math>2\sqrt{2}\,\delta</math> from <math>\Gamma</math>. Thus, if <math>K</math> is the union of all border regions, then <math>K\subset \Delta_{\Gamma}(2\sqrt{2}\,\delta)</math>; hence <math>c(K)\le\overline{c}\,\Delta_{\Gamma}(2\sqrt{2}\,\delta)\le 4\sqrt{2}\,\delta+8\pi\delta^2</math>, by Lemma 2. Notice that <math display="block">\int_R \varphi\,\,-\int_{\bigcup_{i=1}^k R_i} \varphi=\int_K \varphi.</math> This yields <math display="block">\left\vert\sum_{i=1}^k \int_{\Gamma_i} A\,dx+B\,dy\quad-\int_R\varphi \right\vert \le M \delta(1+\pi\sqrt{2}\,\delta) \text{ for some } M > 0.</math> We may as well choose <math>\delta</math> so that the RHS of the last inequality is <math><\varepsilon.</math> The remark in the beginning of this proof implies that the oscillations of <math>A</math> and <math>B</math> on every border region is at most <math>\varepsilon</math>. We have <math display="block">\left\vert\sum_{i=k+1}^s \int_{\Gamma_i}A\,dx+B\,dy\right\vert\le\frac{1}{2} \varepsilon\sum_{i=k+1}^s \Lambda_i.</math> By Lemma 1(iii), <math display="block">\sum_{i=k+1}^s \Lambda_i \le\Lambda + (4\delta)\,4\!\left(\frac{\Lambda}{\delta}+1\right)\le17\Lambda+16.</math> Combining these, we finally get <math display="block">\left\vert\int_\Gamma A\,dx+B\,dy\quad-\int_R \varphi\right\vert< C \varepsilon,</math> for some <math>C > 0</math>. Since this is true for every <math>\varepsilon > 0</math>, we are done.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)