Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Greenhouse effect
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Measurement== [[File:Climate Factor COβ (ZDF, Terra X).webm|thumb|How {{CO2}} causes the greenhouse effect.]] Matter emits [[thermal radiation]] at a rate that [[Stefan-Boltzmann law|is directly proportional to the fourth power of its temperature]]. Some of the radiation emitted by the Earth's surface is absorbed by greenhouse gases and clouds. Without this absorption, Earth's surface would have an average temperature of {{convert|β18|C|F|sigfig=1}}. However, because some of the radiation is absorbed, Earth's average surface temperature is around {{convert|15|C|F}}. Thus, the Earth's greenhouse effect may be measured as a ''temperature change'' of {{convert|33|C-change}}. Thermal radiation is characterized by how much energy it carries, typically in watts per square meter (W/m{{sup|2}}). Scientists also measure the greenhouse effect based on how much more longwave thermal radiation leaves the Earth's surface than reaches space.<ref name="ipcc-ar6wg1-ch7"/>{{rp|968}}<ref name="ipcc-ar6wg1-ch7"/>{{rp|934}}<ref name="ravram1"/><ref name="Schmidt2010paper"/><ref name="Schmidt2010">{{cite web |author=Gavin Schmidt |date=1 October 2010 |title=Taking the Measure of the Greenhouse Effect |url=https://www.giss.nasa.gov/research/briefs/2010_schmidt_05/ |url-status=live |archive-url=https://web.archive.org/web/20210421003101/https://www.giss.nasa.gov/research/briefs/2010_schmidt_05/ |archive-date=21 April 2021 |access-date=13 January 2022 |publisher=NASA Goddard Institute for Space Studies - Science Briefs}}</ref> Currently, longwave radiation leaves the surface at an average rate of 398 W/m{{sup|2}}, but only 239 W/m{{sup|2}} reaches space. Thus, the Earth's greenhouse effect can also be measured as an ''energy flow change'' of 159 W/m{{sup|2}}.<ref name="ipcc-ar6wg1-ch7"/>{{rp|968}}<ref name="ipcc-ar6wg1-ch7"/>{{rp|934}} The greenhouse effect can be expressed as a fraction (0.40) or percentage (40%) of the longwave thermal radiation that leaves Earth's surface but does not reach space.<ref name="ipcc-ar6wg1-ch7"/>{{rp|968}}<ref name="ravram1"/><ref name="ravram2"/> Whether the greenhouse effect is expressed as a change in temperature or as a change in longwave thermal radiation, the same effect is being measured.<ref name="ravram1"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)