Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Group 7 element
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Oxides === ==== Manganese ==== [[File:Manganese(IV)_oxide.jpg|thumb|right|Manganese(IV) oxide]] Manganese forms a variety of oxides: [[Manganese(II) oxide|MnO]], [[Manganese(II,III) oxide|Mn<sub>3</sub>O<sub>4</sub>]], [[Manganese(III) oxide|Mn<sub>2</sub>O<sub>3</sub>]], [[Manganese dioxide|MnO<sub>2</sub>]], MnO<sub>3</sub> and [[Manganese heptoxide|Mn<sub>2</sub>O<sub>7</sub>]]. Manganese(II) oxide is an inorganic compound that forms green crystals. Like many monoxides, MnO adopts the [[Cubic crystal system#Rock-salt structure|rock salt structure]], where cations and anions are both octahedrally coordinated. Also like many oxides, manganese(II) oxide is often [[nonstoichiometric]]: its composition can vary from MnO to MnO<sub>1.045</sub>.<ref name="G&W" /> Manganese(II,III) oxide is formed when any manganese oxide is heated in air above 1000 °C.<ref name="G&W" /> Considerable research has centred on producing nanocrystalline Mn<sub>3</sub>O<sub>4</sub> and various syntheses that involve oxidation of Mn<sup>II</sup> or reduction of Mn<sup>VI</sup>.<ref>Hausmannite Mn<sub>3</sub>O<sub>4</sub> nanorods: synthesis, characterization and magnetic properties Jin Du et al. Nanotechnology, (2006),17 4923-4928, {{doi| 10.1088/0957-4484/17/19/024}}</ref><ref>One-step synthesis of Mn<sub>3</sub>O<sub>4</sub> nanoparticles: Structural and magnetic study Vázquez-Olmos A., Redón R, Rodríguez-Gattorno G., Mata-Zamora M.E., Morales-Leal F, Fernández-Osorio A.L, Saniger J.M. Journal of Colloid and Interface Science, 291, 1, (2005), 175-180 {{doi|10.1016/j.jcis.2005.05.005}}</ref><ref>{{Cite journal |last1=Sun |first1=Xiaoming |last2=Liu |first2=Junfeng |last3=Li |first3=Yadong |date=2006-02-20 |title=Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres |url=https://onlinelibrary.wiley.com/doi/10.1002/chem.200500660 |journal=Chemistry - A European Journal |language=en |volume=12 |issue=7 |pages=2039–2047 |doi=10.1002/chem.200500660 |pmid=16374888 |issn=0947-6539|url-access=subscription }}</ref> Manganese(III) oxide is unlike many other transition metal oxides in that it does not adopt the [[corundum]] ([[aluminium oxide|Al<sub>2</sub>O<sub>3</sub>]]) structure.<ref name="G&W" /> Two forms are generally recognized, α-Mn<sub>2</sub>O<sub>3</sub> and γ-Mn<sub>2</sub>O<sub>3</sub>,<ref name = "Wells">Wells A.F. (1984) ''Structural Inorganic Chemistry'' 5th edition Oxford Science Publications {{ISBN|0-19-855370-6}}</ref> although a high pressure form with the CaIrO<sub>3</sub> structure has been reported too.<ref>High Pressure Phase transition in Mn<sub>2</sub>O<sub>3</sub> to the CaIrO<sub>3</sub>-type Phase Santillan, J.; Shim, S. American Geophysical Union, Fall Meeting 2005, abstract #MR23B-0050</ref> Manganese(IV) oxide is a blackish or brown solid occurs naturally as the mineral [[pyrolusite]], which is the main ore of manganese and a component of [[manganese nodule]]s. The principal use for MnO<sub>2</sub> is for dry-cell [[battery (electricity)|batteries]], such as the [[alkaline battery]] and the [[zinc–carbon battery]].<ref name="G&W" /> Manganese(VII) oxide is dark green in its [[crystalline]] form. The liquid is green by reflected light and red by transmitted light.<ref name=brauer>{{cite book|author=H. Lux|chapter=Manganese(VII) Oxide|title=Handbook of Preparative Inorganic Chemistry, 2nd Ed. |editor=G. Brauer|publisher=Academic Press|year=1963|place=NY, NY|volume=1|pages=1459–1460}}</ref> It is soluble in [[carbon tetrachloride]], and decomposes when in contact with water. ==== Technetium ==== [[File:Technetium(IV)_oxide.png|thumb|right|Technetium(IV) oxide]] Technetium's main oxides are [[technetium(IV) oxide]] and [[technetium(VII) oxide]]. Technetium(IV) oxide was first produced in 1949 by electrolyzing a solution of [[ammonium pertechnetate]] under [[ammonium hydroxide]]. It has often been used to separate technetium from [[molybdenum]] and rhenium.<ref name="tc" /><ref name="radio" /><ref name="electro">{{cite journal |author1=L. B. Rogers |title=Electroseparation of Technetium from Rhenium and Molybdenum |journal=Journal of the American Chemical Society |date=1949 |volume=71 |issue=4 |pages=1507–1508 |doi=10.1021/ja01172a520 |language=en}}</ref> More efficient ways are the reduction of ammonium pertechnetate by [[zinc]] metal and [[hydrochloric acid]], [[stannous chloride]], [[hydrazine]], [[hydroxylamine]], [[ascorbic acid]],<ref name="radio">{{cite journal |author1=Edward Anders |title=THE RADIOCHEMISTRY OF TECHNETIUM |url=https://www.osti.gov/biblio/4073069 |website=OSTI.GOV |publisher=U.S. Department of Energy Office of Scientific and Technical Information |access-date=4 November 2022 |page=8 |doi=10.2172/4073069 |date=1960|osti=4073069 }}</ref> by the hydrolysis of [[potassium hexachlorotechnetate]]<ref name="magnet">{{cite journal |author1=C. M. Nelson |author2=G. E. Boyd |author3=Wm. T. Smith Jr. |title=Magnetochemistry of Technetium and Rhenium |journal=Journal of the American Chemical Society |date=1954 |volume=76 |issue=2 |pages=348–352 |doi=10.1021/ja01631a009 |publisher=ACS Publications |language=en}}</ref> or by the decomposition of ammonium pertechnetate at 700 °C under an inert atmosphere.<ref name="tc">{{cite book |author1=A. G. Sharpe |author2=H. J. Emeléus |title=Advances in Inorganic Chemistry and Radiochemistry |date=1968 |publisher=Elsevier Science |isbn=9780080578606 |page=21 |url=https://books.google.com/books?id=-SnCsg5jM_kC&pg=PA21}}</ref><ref name="img">{{cite thesis |author1=Bradley Covington Childs |title=Volatile Technetium Oxides: Implications for Nuclear Waste Vitrification |journal=UNLV Theses, Dissertations, Professional Papers, and Capstones |date=2017 |doi=10.34917/10985836}}</ref><ref name="at">{{cite journal |author1=Edward Andrews |title=Technetium and Astatine Chemistry |journal=Annual Review of Nuclear Science |date=1959 |volume=9 |pages=203–220 |doi=10.1146/annurev.ns.09.120159.001223 |publisher=Annual Reviews |language=en|doi-access=free |bibcode=1959ARNPS...9..203A }}</ref> It reacts with oxygen to produce technetium(VII) oxide at 450 °C. Technetium(VII) oxide can be prepared directly by the oxidation of technetium at 450-500 °C.<ref>{{cite book|author1=Herrell, A. Y. |author2=Busey, R. H. |author3=Gayer, K. H. | title = Technetium(VII) Oxide, in Inorganic Syntheses| year = 1977 | volume = XVII| pages = 155–158 | isbn = 0-07-044327-0|doi=10.1002/9780470132487.ch41}}</ref> It is a rare example of a molecular binary metal oxide. Other examples are [[ruthenium(VIII) oxide]] and [[osmium(VIII) oxide]]. It adopts a [[centrosymmetric]] corner-shared bi-tetrahedral structure in which the terminal and bridging Tc−O bonds are 167pm and 184 pm respectively and the Tc−O−Tc angle is 180°.<ref>{{cite journal|last=Krebs|first=Bernt|title = Technetium(VII)-oxid: Ein Übergangsmetalloxid mit Molekülstruktur im festen Zustand| journal = Angewandte Chemie | year = 1969 | volume = 81| issue = 9| pages = 328–329| doi = 10.1002/ange.19690810905|bibcode=1969AngCh..81..328K}}</ref> ==== Rhenium ==== Rhenium's main oxides are [[rhenium(IV) oxide]] and [[rhenium(VII) oxide]]. Rhenium(IV) oxide is a gray to black crystalline solid that can be formed by [[comproportionation]].<ref>G. Glemser "Rhenium (IV) Oxide" Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 1480.</ref> At high temperatures it undergoes [[disproportionation]]. It is a laboratory reagent that can be used as a [[catalyst]]. It adopts the [[rutile structure]]. It forms [[perrhenate]]s with alkaline [[hydrogen peroxide]] and [[oxidizing acid]]s.<ref>{{cite web |url=http://www.aaamolybdenum.com/RheniumDioxide.html |title=RHENIUM DIOXIDE - Manufacturer |publisher=Aaamolybdenum.com |accessdate=2012-08-06 |url-status=dead |archiveurl=https://web.archive.org/web/20030209232809/http://www.aaamolybdenum.com/RheniumDioxide.html |archivedate=2003-02-09 }}</ref> In molten sodium hydroxide it forms sodium rhenate:<ref>G. Glemser "Sodium Rhenate (IV)" Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 1483.</ref> : 2{{nbsp}}NaOH + ReO<sub>2</sub> → Na<sub>2</sub>ReO<sub>3</sub> + H<sub>2</sub>O Rhenium(VII) oxide can be formed when rhenium or its oxides or sulfides are oxidized a 500-700 °C in air.<ref name=Schmidt>{{cite book |title=Inorganic Syntheses |year=1967 |volume=9 |last1=Schmidt |first1=Max |last2=Schmidbaur |first2=Hubert |chapter=Trimethylsilyl Perrhenate |pages=149–151 |isbn=9780470132401 |doi=10.1002/9780470132401.ch40}}</ref> It dissolves in water to give [[perrhenic acid]]. Heating Re<sub>2</sub>O<sub>7</sub> gives rhenium(IV) oxide, signalled by the appearance of the dark blue coloration.<ref name="Brauer" /> In its solid form, Re<sub>2</sub>O<sub>7</sub> consists of alternating octahedral and tetrahedral Re centres. It is the raw material for all rhenium compounds, being the volatile fraction obtained upon roasting the host ore.<ref>{{Ullmann|doi=10.1002/14356007.a23_199|title=Rhenium and Rhenium Compounds|year=2000|last1=Georg Nadler|first1=Hans|isbn=3527306730}}</ref> Rhenium, in addition to the +4 and +7 oxidation states, also forms a [[rhenium trioxide|trioxide]]. It can be formed by reducing rhenium(VII) oxide with [[carbon monoxide]] at 200 C or elemental rhenium at 4000 C.<ref>{{Citation |last1=Nechamkin |first1=H. |title=Rhenium(VI) Oxide (Rhenium Trioxide) |date=Jan 1950|url=https://onlinelibrary.wiley.com/doi/10.1002/9780470132340.ch49 |work=Inorganic Syntheses |volume=3 |pages=186–188 |editor-last=Audrieth |editor-first=Ludwig F. |access-date=2023-08-26 |edition=1 |publisher=Wiley |language=en |doi=10.1002/9780470132340.ch49 |isbn=978-0-470-13162-6 |last2=Hiskey |first2=C. F. |last3=Moeller |first3=Therald |last4=Shoemaker |first4=C. E.|url-access=subscription }}</ref> It can also be reduced with [[dioxane]].<ref name="Glemser">{{cite book|author1=O. Glemser|author2=R. Sauer|chapter=Rhenium(VI) Oxide|title=Handbook of Preparative Inorganic Chemistry, 2nd Ed. |editor=G. Brauer|publisher=Academic Press|year=1963|place=NY, NY |volume=2 |pages=1482 }}</ref> It is a red solid with a metallic lustre that resembles [[copper]] in appearance, and is the only stable [[trioxide]] of the group 7 elements.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)