Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hahn–Banach theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Proof=== The [[#Hahn–Banach dominated extension theorem|Hahn–Banach theorem for real vector spaces]] ultimately follows from Helly's initial result for the special case where the linear functional is extended from <math>M</math> to a larger vector space in which <math>M</math> has [[codimension]] <math>1.</math>{{sfn|Narici|Beckenstein|2011|pp=177-220}} {{Math theorem | name = Lemma{{sfn|Narici|Beckenstein|2011|pp=177-183}} | note = {{visible anchor|One–dimensional dominated extension theorem}} | math_statement = Let <math>p : X \to \R</math> be a [[sublinear function]] on a real vector space <math>X,</math> let <math>f : M \to \R</math> a [[linear functional]] on a [[Proper subset|proper]] [[vector subspace]] <math>M \subsetneq X</math> such that <math>f \leq p</math> on <math>M</math> (meaning <math>f(m) \leq p(m)</math> for all <math>m \in M</math>), and let <math>x \in X</math> be a vector {{em|not}} in <math>M</math> (so <math>M \oplus \R x = \operatorname{span} \{M, x\}</math>). There exists a linear extension <math>F : M \oplus \R x \to \R</math> of <math>f</math> such that <math>F \leq p</math> on <math>M \oplus \R x.</math> }} {{Math proof|title=Proof{{sfn|Narici|Beckenstein|2011|pp=177-183}}|drop=hidden|proof= Given any real number <math>b,</math> the map <math>F_b : M \oplus \R x \to \R</math> defined by <math>F_b(m + r x) = f(m) + r b</math> is always a linear extension of <math>f</math> to <math>M \oplus \R x</math><ref group=note>This definition means, for instance, that <math>F_b(x) = F_b(0 + 1 x) = f(0) + 1 b = b</math> and if <math>m \in M</math> then <math>F_b(m) = F_b(m + 0 x) = f(m) + 0 b = f(m).</math> In fact, if <math>G : M \oplus \R x \to \R</math> is any linear extension of <math>f</math> to <math>M \oplus \R x</math> then <math>G = F_b</math> for <math>b := G(x).</math> In other words, every linear extension of <math>f</math> to <math>M \oplus \R x</math> is of the form <math>F_b</math> for some (unique) <math>b.</math></ref> but it might not satisfy <math>F_b \leq p.</math> It will be shown that <math>b</math> can always be chosen so as to guarantee that <math>F_b \leq p,</math> which will complete the proof. If <math>m, n \in M</math> then <math display=block>f(m) - f(n) = f(m - n) \leq p(m - n) = p(m + x - x - n) \leq p(m + x) + p(- x - n)</math> which implies <math display=block>-p(-n - x) - f(n) ~\leq~ p(m + x) - f(m).</math> <!--where importantly, the left hand side is independent of <math>m</math> and the right hand side is independent of <math>n.</math>--> So define <math display=block>a = \sup_{n \in M}[-p(-n - x) - f(n)] \qquad \text{ and } \qquad c = \inf_{m \in M} [p(m + x) - f(m)]</math> where <math>a \leq c</math> are real numbers. To guarantee <math>F_b \leq p,</math> it suffices that <math>a \leq b \leq c</math> (in fact, this is also necessary<ref group=note>Explicitly, for any real number <math>b \in \R,</math> <math>F_b \leq p</math> on <math>M \oplus \R x</math> if and only if <math>a \leq b \leq c.</math> Combined with the fact that <math>F_b(x) = b,</math> it follows that the dominated linear extension of <math>f</math> to <math>M \oplus \R x</math> is unique if and only if <math>a = c,</math> in which case this scalar will be the extension's values at <math>x.</math> Since every linear extension of <math>f</math> to <math>M \oplus \R x</math> is of the form <math>F_b</math> for some <math>b,</math> the bounds <math>a \leq b = F_b(x) \leq c</math> thus also limit the range of possible values (at <math>x</math>) that can be taken by any of <math>f</math>'s dominated linear extensions. Specifically, if <math>F : X \to \R</math> is any linear extension of <math>f</math> satisfying <math>F \leq p</math> then for every <math>x \in X \setminus M,</math> <math>\sup_{m \in M}[-p(-m - x) - f(m)] ~\leq~ F(x) ~\leq~ \inf_{m \in M} [p(m + x) - f(m)].</math></ref>) because then <math>b</math> satisfies "the decisive inequality"{{sfn|Narici|Beckenstein|2011|pp=177-183}} <math display=block>-p(-n - x) - f(n) ~\leq~ b ~\leq~ p(m + x) - f(m) \qquad \text{ for all }\; m, n \in M.</math> To see that <math>f(m) + r b \leq p(m + r x)</math> follows,<ref group=note name="GeometricIllustration" /> assume <math>r \neq 0</math> and substitute <math>\tfrac{1}{r} m</math> in for both <math>m</math> and <math>n</math> to obtain <math display=block>-p\left(- \tfrac{1}{r} m - x\right) - \tfrac{1}{r} f\left(m\right) ~\leq~ b ~\leq~ p\left(\tfrac{1}{r} m + x\right) - \tfrac{1}{r} f\left(m\right).</math> If <math>r > 0</math> (respectively, if <math>r < 0</math>) then the right (respectively, the left) hand side equals <math>\tfrac{1}{r} \left[p(m + r x) - f(m)\right]</math> so that multiplying by <math>r</math> gives <math>r b \leq p(m + r x) - f(m).</math> <!--<math display=block>-p\left(- \tfrac{1}{r} m - x\right) - f\left(\tfrac{1}{r} m\right) = -p\left(\left(- \tfrac{1}{r}\right) \left(m + rx\right)\right) - \tfrac{1}{r} f(m) = \tfrac{1}{r} \left[p(m + r x) - f(m)\right].</math> --> <math>\blacksquare</math> }} This lemma remains true if <math>p : X \to \R</math> is merely a [[convex function]] instead of a sublinear function.{{Sfn|Schechter|1996|pp=318-319}}{{Sfn|Reed|Simon|1980|p=}} {{collapse top|title=Proof|left=true}} Assume that <math>p</math> is convex, which means that <math>p(t y + (1 - t) z) \leq t p(y) + (1 - t) p(z)</math> for all <math>0 \leq t \leq 1</math> and <math>y, z \in X.</math> Let <math>M,</math> <math>f : M \to \R,</math> and <math>x \in X \setminus M</math> be as in [[Hahn–Banach theorem#One–dimensional dominated extension theorem|the lemma's statement]]. Given any <math>m, n \in M</math> and any positive real <math>r, s > 0,</math> the positive real numbers <math>t := \tfrac{s}{r + s}</math> and <math>\tfrac{r}{r + s} = 1 - t</math> sum to <math>1</math> so that the convexity of <math>p</math> on <math>X</math> guarantees <math display=block>\begin{alignat}{9} p\left(\tfrac{s}{r + s} m + \tfrac{r}{r + s} n\right) ~&=~ p\big(\tfrac{s}{r + s} (m - r x) &&+ \tfrac{r}{r + s} (n + s x)\big) && \\ &\leq~ \tfrac{s}{r + s} \; p(m - r x) &&+ \tfrac{r}{r + s} \; p(n + s x) && \\ \end{alignat}</math> and hence <math display=block>\begin{alignat}{9} s f(m) + r f(n) ~&=~ (r + s) \; f\left(\tfrac{s}{r + s} m + \tfrac{r}{r + s} n\right) && \qquad \text{ by linearity of } f \\ &\leq~ (r + s) \; p\left(\tfrac{s}{r + s} m + \tfrac{r}{r + s} n\right) && \qquad f \leq p \text{ on } M \\ &\leq~ s p(m - r x) + r p(n + s x) \\ \end{alignat}</math> thus proving that <math>- s p(m - r x) + s f(m) ~\leq~ r p(n + s x) - r f(n),</math> which after multiplying both sides by <math>\tfrac{1}{rs}</math> becomes <math display=block>\tfrac{1}{r} [- p(m - r x) + f(m)] ~\leq~ \tfrac{1}{s} [p(n + s x) - f(n)].</math> This implies that the values defined by <math display=block>a = \sup_{\stackrel{m \in M}{r > 0}} \tfrac{1}{r} [- p(m - r x) + f(m)] \qquad \text{ and } \qquad c = \inf_{\stackrel{n \in M}{s > 0}} \tfrac{1}{s} [p(n + s x) - f(n)]</math> are real numbers that satisfy <math>a \leq c.</math> As in the above proof of the [[Hahn–Banach theorem#One–dimensional dominated extension theorem|one–dimensional dominated extension theorem]] above, for any real <math>b \in \R</math> define <math>F_b : M \oplus \R x \to \R</math> by <math>F_b(m + r x) = f(m) + r b.</math> It can be verified that if <math>a \leq b \leq c</math> then <math>F_b \leq p</math> where <math>r b \leq p(m + r x) - f(m)</math> follows from <math>b \leq c</math> when <math>r > 0</math> (respectively, follows from <math>a \leq b</math> when <math>r < 0</math>). <math>\blacksquare</math> {{collapse bottom}} The [[#One–dimensional dominated extension theorem|lemma above]] is the key step in deducing the dominated extension theorem from [[Zorn's lemma]]. {{Math proof|title=Proof of dominated extension theorem using [[Zorn's lemma]]|drop=hidden|proof= The set of all possible dominated linear extensions of <math>f</math> are partially ordered by extension of each other, so there is a maximal extension <math>F.</math> By the codimension-1 result, if <math>F</math> is not defined on all of <math>X,</math> then it can be further extended. Thus <math>F</math> must be defined everywhere, as claimed. <math>\blacksquare</math> }} When <math>M</math> has countable codimension, then using induction and the lemma completes the proof of the Hahn–Banach theorem. The standard proof of the general case uses [[Zorn's lemma]] although the strictly weaker [[ultrafilter lemma]]{{sfn|Luxemburg|1962|p=}} (which is equivalent to the [[compactness theorem]] and to the [[Boolean prime ideal theorem]]) may be used instead. Hahn–Banach can also be proved using [[Tychonoff's theorem]] for [[Compact space|compact]] [[Hausdorff space]]s{{sfn|Łoś|Ryll-Nardzewski|1951|pp=233–237}} (which is also equivalent to the ultrafilter lemma) The [[Mizar system|Mizar project]] has completely formalized and automatically checked the proof of the Hahn–Banach theorem in the HAHNBAN file.<ref>[http://mizar.uwb.edu.pl/JFM/Vol5/hahnban.html HAHNBAN file]</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)