Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Happy number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Specific ''b''-happy numbers== ===4-happy numbers=== For <math>b = 4</math>, the only positive perfect digital invariant for <math>F_{2, b}</math> is the trivial perfect digital invariant 1, and there are no other cycles. Because all numbers are [[Periodic point#Iterated functions|preperiodic points]] for <math>F_{2, b}</math>, all numbers lead to 1 and are happy. As a result, [[base 4]] is a happy base. ===6-happy numbers=== For <math>b = 6</math>, the only positive perfect digital invariant for <math>F_{2, b}</math> is the trivial perfect digital invariant 1, and the only cycle is the eight-number cycle : 5 β 41 β 25 β 45 β 105 β 42 β 32 β 21 β 5 β ... and because all numbers are preperiodic points for <math>F_{2, b}</math>, all numbers either lead to 1 and are happy, or lead to the cycle and are unhappy. Because base 6 has no other perfect digital invariants except for 1, no positive integer other than 1 is the sum of the squares of its own digits. In base 10, the 74 6-happy numbers up to 1296 = 6<sup>4</sup> are (written in base 10): : 1, 6, 36, 44, 49, 79, 100, 160, 170, 216, 224, 229, 254, 264, 275, 285, 289, 294, 335, 347, 355, 357, 388, 405, 415, 417, 439, 460, 469, 474, 533, 538, 580, 593, 600, 608, 628, 638, 647, 695, 707, 715, 717, 767, 777, 787, 835, 837, 847, 880, 890, 928, 940, 953, 960, 968, 1010, 1018, 1020, 1033, 1058, 1125, 1135, 1137, 1168, 1178, 1187, 1195, 1197, 1207, 1238, 1277, 1292, 1295 ===10-happy numbers=== For <math>b = 10</math>, the only positive perfect digital invariant for <math>F_{2, b}</math> is the trivial perfect digital invariant 1, and the only cycle is the eight-number cycle : 4 β 16 β 37 β 58 β 89 β 145 β 42 β 20 β 4 β ... and because all numbers are preperiodic points for <math>F_{2, b}</math>, all numbers either lead to 1 and are happy, or lead to the cycle and are unhappy. Because base 10 has no other perfect digital invariants except for 1, no positive integer other than 1 is the sum of the squares of its own digits. In base 10, the 143 10-happy numbers up to 1000 are: : 1, 7, 10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100, 103, 109, 129, 130, 133, 139, 167, 176, 188, 190, 192, 193, 203, 208, 219, 226, 230, 236, 239, 262, 263, 280, 291, 293, 301, 302, 310, 313, 319, 320, 326, 329, 331, 338, 356, 362, 365, 367, 368, 376, 379, 383, 386, 391, 392, 397, 404, 409, 440, 446, 464, 469, 478, 487, 490, 496, 536, 556, 563, 565, 566, 608, 617, 622, 623, 632, 635, 637, 638, 644, 649, 653, 655, 656, 665, 671, 673, 680, 683, 694, 700, 709, 716, 736, 739, 748, 761, 763, 784, 790, 793, 802, 806, 818, 820, 833, 836, 847, 860, 863, 874, 881, 888, 899, 901, 904, 907, 910, 912, 913, 921, 923, 931, 932, 937, 940, 946, 964, 970, 973, 989, 998, 1000 {{OEIS|id=A007770}}. The distinct combinations of digits that form 10-happy numbers below 1000 are (the rest are just rearrangements and/or insertions of zero digits): : 1, 7, 13, 19, 23, 28, 44, 49, 68, 79, 129, 133, 139, 167, 188, 226, 236, 239, 338, 356, 367, 368, 379, 446, 469, 478, 556, 566, 888, 899. {{OEIS|id=A124095}}. The first pair of consecutive 10-happy numbers is 31 and 32.<ref>{{cite OEIS |1=A035502 |2=Lower of pair of consecutive happy numbers |access-date=8 April 2011}}</ref> The first set of three consecutive is 1880, 1881, and 1882.<ref>{{cite OEIS |1=A072494 |2=First of triples of consecutive happy numbers |access-date=8 April 2011}}</ref> It has been proven that there exist sequences of consecutive happy numbers of any natural number length.<ref>{{Cite arXiv |title=Consecutive Happy Numbers |eprint=math/0607213 |last1=Pan |first1=Hao |year=2006}}</ref> The beginning of the first run of at least ''n'' consecutive 10-happy numbers for ''n'' = 1, 2, 3, ... is<ref name="Sloane-A055629">{{Cite OEIS |1=A055629 |2=Beginning of first run of at least ''n'' consecutive happy numbers}}</ref> : 1, 31, 1880, 7839, 44488, 7899999999999959999999996, 7899999999999959999999996, ... As Robert Styer puts it in his paper calculating this series: "Amazingly, the same value of N that begins the least sequence of six consecutive happy numbers also begins the least sequence of seven consecutive happy numbers."<ref>{{cite journal |last=Styer |first=Robert |year=2010 |page=5 |title=Smallest Examples of Strings of Consecutive Happy Numbers |journal=[[Journal of Integer Sequences]] |volume=13 |id=10.6.3 |url=https://cs.uwaterloo.ca/journals/JIS/VOL13/Styer/styer5.html |via=[[University of Waterloo]]}} Cited in {{harvtxt|Sloane "A055629"}}.</ref> The number of 10-happy numbers up to 10<sup>''n''</sup> for 1 β€ ''n'' β€ 20 is<ref>{{Cite OEIS |1=A068571 |2=Number of happy numbers <= 10^n}}</ref> : 3, 20, 143, 1442, 14377, 143071, 1418854, 14255667, 145674808, 1492609148, 15091199357, 149121303586, 1443278000870, 13770853279685, 130660965862333, 1245219117260664, 12024696404768025, 118226055080025491, 1183229962059381238, 12005034444292997294.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)