Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Helmholtz decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Derivation === {{math proof| proof = Suppose we have a vector function <math>\mathbf{F}(\mathbf{r})</math> of which we know the curl, <math>\nabla\times\mathbf{F}</math>, and the divergence, <math>\nabla\cdot\mathbf{F}</math>, in the domain and the fields on the boundary. Writing the function using the [[delta function]] in the form <math display="block">\delta^3(\mathbf{r}-\mathbf{r}')=-\frac 1 {4\pi} \nabla^2 \frac{1}{|\mathbf{r}-\mathbf{r}'|}\, ,</math> where <math>\nabla^2</math> is the [[Laplacian]] operator, we have <math display="block">\begin{align} \mathbf{F}(\mathbf{r}) &= \int_V \mathbf{F}\left(\mathbf{r}'\right)\delta^3 (\mathbf{r}-\mathbf{r}') \mathrm{d}V' \\ &=\int_V\mathbf{F}(\mathbf{r}')\left(-\frac{1}{4\pi}\nabla^2\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\right)\mathrm{d}V' \end{align}</math> Now, changing the meaning of <math>\nabla^2</math> to the [[vector Laplacian]] operator (we have the right to do so because this laplacian is with respect to <math>\mathbf{r}</math> therefore it sees the vector field <math>\mathbf{F}(\mathbf{r'})</math> as a constant), we can move <math>\mathbf{F}(\mathbf{r'})</math> to the right of the<math>\nabla^2</math>operator. <math display="block">\begin{align}\mathbf{F}(\mathbf{r})&=\int_V-\frac{1}{4\pi}\nabla^2\frac{\mathbf{F}(\mathbf{r}')}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V' \\ &=-\frac{1}{4\pi}\nabla^2 \int_V \frac{\mathbf{F}(\mathbf{r}')}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V' \\ &=-\frac{1}{4\pi}\left[\nabla\left(\nabla\cdot\int_V\frac{\mathbf{F}(\mathbf{r}')}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)-\nabla\times\left(\nabla\times\int_V\frac{\mathbf{F}(\mathbf{r}')}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\right] \\ &= -\frac{1}{4\pi} \left[\nabla\left(\int_V\mathbf{F}(\mathbf{r}')\cdot\nabla\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)+\nabla\times\left(\int_V\mathbf{F}(\mathbf{r}')\times\nabla\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\right] \\ &=-\frac{1}{4\pi}\left[-\nabla\left(\int_V\mathbf{F}(\mathbf{r}')\cdot\nabla'\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)-\nabla\times\left(\int_V\mathbf{F} (\mathbf{r}')\times\nabla'\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\right] \end{align}</math> where we have used the vector Laplacian identity: <math display="block">\nabla^{2}\mathbf{a}=\nabla (\nabla\cdot\mathbf{a})-\nabla\times (\nabla\times\mathbf{a}) \ ,</math> differentiation/integration with respect to <math>\mathbf r'</math>by <math>\nabla'/\mathrm dV',</math> and in the last line, linearity of function arguments: <math display="block"> \nabla\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}=-\nabla'\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\ .</math> Then using the vectorial identities <math display="block">\begin{align} \mathbf{a}\cdot\nabla\psi &=-\psi(\nabla\cdot\mathbf{a})+\nabla\cdot (\psi\mathbf{a}) \\ \mathbf{a}\times\nabla\psi &=\psi(\nabla\times\mathbf{a})-\nabla \times (\psi\mathbf{a}) \end{align}</math> we get <math display="block">\begin{align} \mathbf{F}(\mathbf{r})=-\frac{1}{4\pi}\bigg[ &-\nabla\left(-\int_{V}\frac{\nabla'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'+\int_{V}\nabla'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right) \\& -\nabla\times\left(\int_{V}\frac{\nabla'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V' - \int_{V}\nabla'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\bigg]. \end{align}</math> Thanks to the [[divergence theorem]] the equation can be rewritten as <math display="block">\begin{align} \mathbf{F} (\mathbf{r}) &= -\frac{1}{4\pi} \bigg[ -\nabla\left( -\int_{V} \frac{ \nabla'\cdot\mathbf{F}\left(\mathbf{r}'\right) }{ \left|\mathbf{r}-\mathbf{r}'\right| } \mathrm{d}V' + \oint_{S}\mathbf{\hat{n}}'\cdot \frac{ \mathbf{F}\left(\mathbf{r}'\right) }{ \left|\mathbf{r}-\mathbf{r}'\right| }\mathrm{d}S' \right) \\ &\qquad\qquad -\nabla\times\left(\int_{V}\frac{\nabla'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V' -\oint_{S}\mathbf{\hat{n}}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'\right) \bigg] \\ &= -\nabla\left[ \frac{1}{4\pi}\int_{V} \frac{ \nabla'\cdot\mathbf{F}\left(\mathbf{r}'\right) }{\left| \mathbf{r}-\mathbf{r}' \right|} \mathrm{d}V' - \frac{1}{4\pi} \oint_{S}\mathbf{\hat{n}}' \cdot \frac{ \mathbf{F}\left(\mathbf{r}'\right) }{ \left| \mathbf{r}-\mathbf{r}' \right| } \mathrm{d}S' \right] \\ &\quad + \nabla\times \left[ \frac{1}{4\pi}\int_{V} \frac{ \nabla '\times\mathbf{F}\left(\mathbf{r}'\right) }{ \left| \mathbf{r}-\mathbf{r}' \right| } \mathrm{d}V' - \frac{1}{4\pi}\oint_{S} \mathbf{\hat{n}}' \times \frac{ \mathbf{F}\left(\mathbf{r}'\right) }{ \left| \mathbf{r}-\mathbf{r}' \right| } \mathrm{d}S' \right] \end{align}</math> with outward surface normal <math> \mathbf{\hat{n}}' </math>. Defining <math display="block">\Phi(\mathbf{r})\equiv\frac{1}{4\pi}\int_{V}\frac{\nabla'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math> <math display="block">\mathbf{A}(\mathbf{r})\equiv\frac{1}{4\pi}\int_{V}\frac{\nabla'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math> we finally obtain <math display="block">\mathbf{F}=-\nabla\Phi+\nabla\times\mathbf{A}.</math> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)