Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Heron's formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Proofs == There are many ways to prove Heron's formula, for example using [[trigonometry]] as below, or the [[incenter]] and one [[excircle]] of the triangle,<ref>{{Cite web|date=15 December 1997|title=Personal email communication between mathematicians John Conway and Peter Doyle|url=https://math.dartmouth.edu/~doyle/docs/heron/heron.txt|access-date=25 September 2020}}</ref> or as a special case of [[De Gua's theorem]] (for the particular case of acute triangles),<ref>{{Cite journal|last=LΓ©vy-Leblond|first=Jean-Marc|date=2020-09-14|title=A Symmetric 3D Proof of Heron's Formula|journal=The Mathematical Intelligencer|volume=43|issue=2|pages=37β39|language=en|doi=10.1007/s00283-020-09996-8|issn=0343-6993|doi-access=free}}</ref> or as a special case of [[Brahmagupta's formula]] (for the case of a degenerate cyclic quadrilateral). ===Trigonometric proof using the law of cosines=== A modern proof, which uses [[algebra]] and is quite different from the one provided by Heron, follows.<ref>{{cite book | author=Niven, Ivan | title=Maxima and Minima Without Calculus | url=https://archive.org/details/maximaminimawith0000nive | url-access=registration | publisher=The Mathematical Association of America | year=1981 | pages=[https://archive.org/details/maximaminimawith0000nive/page/7 7β8]}}</ref> Let {{tmath|a,}} {{tmath|b,}} {{tmath|c}} be the sides of the triangle and {{tmath|\alpha,}} {{tmath|\beta,}} {{tmath|\gamma}} the [[angle]]s opposite those sides. Applying the [[law of cosines]] we get <math display=block>\cos \gamma = \frac{a^2+b^2-c^2}{2ab}</math> [[File:Triangle with notations 2 without points.svg|thumb|A triangle with sides {{mvar|a}}, {{mvar|b}} and {{mvar|c}}]] From this proof, we get the algebraic statement that <math display=block>\sin \gamma = \sqrt{1-\cos^2 \gamma} = \frac{\sqrt{4a^2 b^2 -(a^2 +b^2 -c^2)^2 }}{2ab}.</math> The [[altitude (triangle)|altitude]] of the triangle on base {{tmath|a}} has length {{tmath|b\sin\gamma}}, and it follows <math display=block>\begin{align} A &= \tfrac12 (\mbox{base}) (\mbox{altitude}) \\[6mu] &= \tfrac12 ab\sin \gamma \\[6mu] &= \frac{ab}{4ab}\sqrt{4a^2 b^2 -(a^2 +b^2 -c^2)^2} \\[6mu] &= \tfrac14\sqrt{-a^4 - b^4 - c^4 + 2 a^2 b^2 + 2 a^2 c^2 + 2 b^2 c^2} \\[6mu] &= \tfrac14\sqrt{(a + b + c)(- a + b + c)(a - b + c)(a + b - c)} \\[6mu] &= \sqrt{ \left(\frac{a + b + c}{2}\right) \left(\frac{- a + b + c}{2}\right) \left(\frac{a - b + c}{2}\right) \left(\frac{a + b - c}{2}\right)} \\[6mu] &= \sqrt{s(s-a)(s-b)(s-c)}. \end{align}</math> ===Algebraic proof using the Pythagorean theorem=== [[Image:Triangle with notations 3.svg|thumb|270px|Triangle with altitude {{mvar|h}} cutting base {{mvar|c}} into {{math|''d'' + (''c'' β ''d'')}}]] The following proof is very similar to one given by Raifaizen.<ref>{{Cite journal | last = Raifaizen | first = Claude H. | title = A Simpler Proof of Heron's Formula | journal = Mathematics Magazine | volume = 44 | number = 1 | pages = 27β28 | year = 1971 | doi = 10.1080/0025570X.1971.11976093 }}</ref> By the [[Pythagorean theorem]] we have <math>b^2 = h^2 + d^2</math> and <math>a^2 = h^2 + (c - d)^2</math> according to the figure at the right. Subtracting these yields <math>a^2 - b^2 = c^2 - 2cd.</math> This equation allows us to express {{tmath|d}} in terms of the sides of the triangle: <math display=block>d = \frac{-a^2 + b^2 + c^2}{2c}.</math> For the height of the triangle we have that <math>h^2 = b^2 - d^2.</math> By replacing {{tmath|d}} with the formula given above and applying the [[difference of squares]] identity we get <math display=block> \begin{align} h^2 &= b^2-\left(\frac{-a^2 + b^2 + c^2}{2c}\right)^2 \\ &= \frac{(2bc - a^2 + b^2 + c^2)(2bc + a^2 - b^2 - c^2)}{4c^2} \\ &= \frac{\big((b + c)^2 - a^2\big)\big(a^2 - (b - c)^2\big)}{4c^2} \\ &= \frac{(b + c - a)(b + c + a)(a + b - c)(a - b + c)}{4c^2} \\ &= \frac{2(s - a) \cdot 2s \cdot 2(s - c) \cdot 2(s - b)}{4c^2} \\ &= \frac{4s(s - a)(s - b)(s -c )}{c^2}. \end{align} </math> We now apply this result to the formula that calculates the area of a triangle from its height: <math display=block>\begin{align} A &= \frac{ch}{2} \\ &= \sqrt{\frac{c^2}{4} \cdot \frac{4s(s - a)(s - b)(s - c)}{c^2}} \\ &= \sqrt{s(s - a)(s - b)(s - c)}. \end{align}</math> ===Trigonometric proof using the law of cotangents=== [[File:Herontriangle2greek.svg|thumb|270px|right|Geometrical significance of {{math|''s'' β ''a''}}, {{math|''s'' β ''b''}}, and {{math|''s'' β ''c''}}. See the [[law of cotangents]] for the reasoning behind this.]] If {{tmath|r}} is the radius of the [[incircle]] of the triangle, then the triangle can be broken into three triangles of equal altitude {{tmath|r}} and bases {{tmath|a,}} {{tmath|b,}} and {{tmath|c.}} Their combined area is <math display=block>A = \tfrac12ar + \tfrac12br + \tfrac12cr = rs,</math> where <math>s = \tfrac12(a + b + c)</math> is the semiperimeter. The triangle can alternately be broken into six triangles (in congruent pairs) of altitude {{tmath|r}} and bases {{tmath|s - a,}} {{tmath|s - b,}} and {{tmath|s - c}} of combined area (see [[law of cotangents]]) <math display=block>\begin{align} A &= r(s-a) + r(s-b) + r(s-c) \\[2mu] &= r^2\left(\frac{s - a}{r} + \frac{s - b}{r} + \frac{s - c}{r}\right) \\[2mu] &= r^2\left(\cot{\frac{\alpha}{2}} + \cot{\frac{\beta}{2}} + \cot{\frac{\gamma}{2}}\right) \\[3mu] &= r^2\left(\cot{\frac{\alpha}{2}} \cot{\frac{\beta}{2}} \cot{\frac{\gamma}{2}}\right)\\[3mu] &= r^2\left(\frac{s - a}{r} \cdot \frac{s - b}{r} \cdot \frac{s - c}{r}\right) \\[3mu] &= \frac{(s-a)(s-b)(s-c)}{r}. \end{align}</math> The middle step above is <math display=inline>\cot{\tfrac{\alpha}{2}} + \cot{\tfrac{\beta}{2}} + \cot{\tfrac{\gamma}{2}} = {}</math><math>\cot{\tfrac{\alpha}{2}}\cot{\tfrac{\beta}{2}}\cot{\tfrac{\gamma}{2}},</math> the [[Proofs of trigonometric identities#Miscellaneous β the triple cotangent identity|triple cotangent identity]], which applies because the sum of half-angles is <math display=inline>\tfrac\alpha2 + \tfrac\beta2 + \tfrac\gamma2 = \tfrac\pi2.</math> Combining the two, we get <math display=block>A^2 = s(s - a)(s - b)(s - c),</math> from which the result follows.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)