Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hilbert–Schmidt operator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties == * Every Hilbert–Schmidt operator {{math|''T'' : ''H'' → ''H''}} is a [[compact operator]].{{sfn | Conway | 1990 | p=267}} * A bounded linear operator {{math|''T'' : ''H'' → ''H''}} is Hilbert–Schmidt if and only if the same is true of the operator <math display="inline">\left| T \right| := \sqrt{T^* T}</math>, in which case the Hilbert–Schmidt norms of ''T'' and |''T''| are equal.{{sfn | Conway | 1990 | p=267}} * Hilbert–Schmidt operators are [[nuclear operator]]s of order 2, and are therefore [[compact operator]]s.{{sfn | Conway | 1990 | p=267}} * If <math>S : H_1 \to H_2</math> and <math>T : H_2 \to H_3</math> are Hilbert–Schmidt operators between Hilbert spaces then the composition <math>T \circ S : H_1 \to H_3</math> is a [[nuclear operator]].{{sfn | Schaefer | 1999 | p=177}} * If {{math|''T'' : ''H'' → ''H''}} is a bounded linear operator then we have <math>\left\| T \right\| \leq \left\| T \right\|_{\operatorname{HS}}</math>.{{sfn | Conway | 1990 | p=267}} * {{math|''T''}} is a Hilbert–Schmidt operator if and only if the [[trace class|trace]] <math>\operatorname{Tr}</math> of the nonnegative self-adjoint operator <math>T^{*} T</math> is finite, in which case <math>\|T\|^2_\text{HS} = \operatorname{Tr}(T^* T)</math>.<ref name="MathWorld"/><ref name="EOM"/> * If {{math|''T'' : ''H'' → ''H''}} is a bounded linear operator on {{math|''H''}} and {{math|''S'' : ''H'' → ''H''}} is a Hilbert–Schmidt operator on {{math|''H''}} then <math>\left\| S^* \right\|_{\operatorname{HS}} = \left\| S \right\|_{\operatorname{HS}}</math>, <math>\left\| T S \right\|_{\operatorname{HS}} \leq \left\| T \right\| \left\| S \right\|_{\operatorname{HS}}</math>, and <math>\left\| S T \right\|_{\operatorname{HS}} \leq \left\| S \right\|_{\operatorname{HS}} \left\| T \right\|</math>.{{sfn | Conway | 1990 | p=267}} In particular, the composition of two Hilbert–Schmidt operators is again Hilbert–Schmidt (and even a [[trace class operator]]).{{sfn | Conway | 1990 | p=267}} * The space of Hilbert–Schmidt operators on {{math|''H''}} is an [[Ideal (ring theory)|ideal]] of the space of bounded operators <math>B\left( H \right)</math> that contains the operators of finite-rank.{{sfn | Conway | 1990 | p=267}} * If {{math|''A''}} is a Hilbert–Schmidt operator on {{math|''H''}} then <math display="block">\|A\|^2_\text{HS} = \sum_{i,j} |\langle e_i, Ae_j \rangle|^2 = \|A\|^2_2</math> where <math>\{e_i: i \in I\}</math> is an [[orthonormal basis]] of ''H'', and <math>\|A\|_2</math> is the [[Schatten norm]] of <math>A</math> for {{math|1=''p'' = 2}}. In [[Euclidean space]], <math>\|\cdot\|_\text{HS}</math> is also called the [[matrix norm#Frobenius norm|Frobenius norm]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)