Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Householder transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Properties==== The Householder matrix has the following properties: * it is [[Hermitian matrix|Hermitian]]: <math display="inline">P = P^*</math>, * it is [[unitary matrix|unitary]]: <math display="inline">P^{-1} = P^*</math> (via the [[Sherman-Morrison formula]]), * hence it is [[involutory matrix|involutory]]: <math display="inline">P = P^{-1}</math>. * A Householder matrix has eigenvalues <math display="inline">\pm 1</math>. To see this, notice that if <math display="inline">\vec x</math> is orthogonal to the vector <math display="inline">\vec v</math> which was used to create the reflector, then <math display="inline">P_v\vec x = (I-2\vec v\vec v^*)\vec x = \vec x-2\langle\vec v,\vec x\rangle\vec v = \vec x</math>, i.e., <math display="inline">1</math> is an eigenvalue of multiplicity <math display="inline">n - 1</math>, since there are <math display="inline">n - 1</math> independent vectors orthogonal to <math display="inline">\vec v</math>. Also, notice <math display="inline">P_v\vec v = (I-2\vec v\vec v^*)\vec v = \vec v - 2\langle\vec v,\vec v\rangle\vec v = -\vec v</math> (since <math>\vec v</math> is by definition a unit vector), and so <math display="inline">-1</math> is an eigenvalue with multiplicity <math display="inline">1</math>. * The [[determinant]] of a Householder reflector is <math display="inline">-1</math>, since the determinant of a matrix is the product of its eigenvalues, in this case one of which is <math display="inline">-1</math> with the remainder being <math display="inline">1</math> (as in the previous point), or via the [[Matrix determinant lemma]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)