Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hypercube
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Faces == Every hypercube admits, as its faces, hypercubes of a lower dimension contained in its boundary. A hypercube of dimension <math>n</math> admits <math>2n</math> facets, or faces of dimension <math>n-1</math>: a (<math>1</math>-dimensional) line segment has <math>2</math> endpoints; a (<math>2</math>-dimensional) square has <math>4</math> sides or edges; a <math>3</math>-dimensional cube has <math>6</math> square faces; a (<math>4</math>-dimensional) tesseract has <math>8</math> three-dimensional cubes as its facets. The number of vertices of a hypercube of dimension <math>n</math> is <math>2^n</math> (a usual, <math>3</math>-dimensional cube has <math>2^3=8</math> vertices, for instance).<ref>{{Cite journal |author1=Miroslav Vořechovský |author2=Jan Mašek |author3=Jan Eliáš |title=Distance-based optimal sampling in a hypercube: Analogies to N-body systems |journal=Advances in Engineering Software |volume=137 |date=November 2019 |at=102709 |issn=0965-9978 |doi=10.1016/j.advengsoft.2019.102709}}</ref> The number of the <math>m</math>-dimensional hypercubes (just referred to as <math>m</math>-cubes from here on) contained in the boundary of an <math>n</math>-cube is :<math> E_{m,n} = 2^{n-m}{n \choose m} </math>,{{sfn|Coxeter|1973|p=122|loc=§7·25}} where <math>{n \choose m}=\frac{n!}{m!\,(n-m)!}</math> and <math>n!</math> denotes the [[factorial]] of <math>n</math>. For example, the boundary of a <math>4</math>-cube (<math>n=4</math>) contains <math>8</math> cubes (<math>3</math>-cubes), <math>24</math> squares (<math>2</math>-cubes), <math>32</math> line segments (<math>1</math>-cubes) and <math>16</math> vertices (<math>0</math>-cubes). This identity can be proven by a simple combinatorial argument: for each of the <math>2^n</math> vertices of the hypercube, there are <math>\tbinom n m</math> ways to choose a collection of <math>m</math> edges incident to that vertex. Each of these collections defines one of the <math>m</math>-dimensional faces incident to the considered vertex. Doing this for all the vertices of the hypercube, each of the <math>m</math>-dimensional faces of the hypercube is counted <math>2^m</math> times since it has that many vertices, and we need to divide <math>2^n\tbinom n m</math> by this number. The number of facets of the hypercube can be used to compute the <math>(n-1)</math>-dimensional volume of its boundary: that volume is <math>2n</math> times the volume of a <math>(n-1)</math>-dimensional hypercube; that is, <math>2ns^{n-1}</math> where <math>s</math> is the length of the edges of the hypercube. These numbers can also be generated by the linear [[recurrence relation]]. :<math>E_{m,n} = 2E_{m,n-1} + E_{m-1,n-1} \!</math>, with <math>E_{0,0}= 1</math>, and <math>E_{m,n}=0</math> when <math>n < m</math>, <math>n < 0</math>, or <math>m < 0</math>. For example, extending a square via its 4 vertices adds one extra line segment (edge) per vertex. Adding the opposite square to form a cube provides <math>E_{1,3}=12</math> line segments. The extended [[f-vector]] for an ''n''-cube can also be computed by expanding <math>(2x+1)^n</math> (concisely, (2,1)<sup>''n''</sup>), and reading off the coefficients of the resulting [[Polynomial#Multiplication|polynomial]]. For example, the elements of a tesseract is (2,1)<sup>4</sup> = (4,4,1)<sup>2</sup> = (16,32,24,8,1). {| class="wikitable" |+ Number <math>E_{m,n}</math> of <math>m</math>-dimensional faces of a <math>n</math>-dimensional hypercube {{OEIS|A038207}} |- ! || || || m|| 0|| 1|| 2|| 3|| 4|| 5|| 6|| 7|| 8|| 9|| 10 |- ! [[polytope|''n'']] ! ''n''-cube ! Names ![[Schläfli symbol|Schläfli]]<br>[[Coxeter–Dynkin diagram|Coxeter]]<br> ![[Vertex (geometry)|Vertex]]<br>0-face<br>|| [[Edge (geometry)|Edge]]<br>1-face<br>|| [[Face (geometry)|Face]]<br>2-face<br>|| [[Cell (geometry)|Cell]]<br>3-face<br>|| <br>4-face<br>||<br> 5-face<br>|| <br>6-face<br>|| <br>7-face<br>||<br> 8-face<br>|| <br>9-face<br>||<br>10-face<br> |- ! [[0-polytope|0]] ! 0-cube | Point<br>'''Monon'''<br> | ( )<br>{{CDD|node}}<br> | 1|| ||rowspan=2| ||rowspan=3| ||rowspan=4| ||rowspan=5| ||rowspan=6| ||rowspan=7| ||rowspan=8| ||rowspan=9| ||rowspan=10| |- ! [[1-polytope|1]] ! 1-cube | [[Line segment]]<br>'''Dion'''<ref>Johnson, Norman W.; ''Geometries and Transformations'', Cambridge University Press, 2018, p.224.</ref><br> |{}<br>{{CDD|node_1}}<br> | 2|| 1 |- ! [[2-polytope|2]] ! 2-cube | [[Square (geometry)|Square]]<br>'''Tetragon'''<br> |{4}<br>{{CDD|node_1|4|node}}<br> | 4|| 4|| 1 |- ! [[3-polytope|3]] ! 3-cube | [[Cube]]<br>'''Hexahedron'''<br> |{4,3}<br>{{CDD|node_1|4|node|3|node}}<br> | 8|| 12|| 6|| 1 |- ! [[4-polytope|4]] ! 4-cube | [[Tesseract]]<br>'''Octachoron'''<br> |{4,3,3}<br>{{CDD|node_1|4|node|3|node|3|node}}<br> | 16|| 32|| 24|| 8|| 1 |- ! [[5-polytope|5]] ! [[5-cube]] | Penteract<br>'''Deca-5-tope'''<br> |{4,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node}}<br> | 32|| 80|| 80|| 40|| 10|| 1 |- ! [[6-polytope|6]] ! [[6-cube]] | Hexeract<br>'''Dodeca-6-tope'''<br> |{4,3,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node|3|node}}<br> | 64|| 192|| 240|| 160|| 60|| 12|| 1 |- ! [[7-polytope|7]] ! [[7-cube]] | Hepteract<br>'''Tetradeca-7-tope'''<br> |{4,3,3,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<br> | 128|| 448|| 672|| 560|| 280|| 84|| 14|| 1 |- ! [[8-polytope|8]] ! [[8-cube]] | Octeract<br>'''Hexadeca-8-tope'''<br> |{4,3,3,3,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<br> | 256|| 1024|| 1792|| 1792|| 1120|| 448|| 112|| 16|| 1 |- ! [[9-polytope|9]] ! [[9-cube]] | Enneract<br>'''Octadeca-9-tope'''<br> |{4,3,3,3,3,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}<br> | 512|| 2304|| 4608|| 5376|| 4032|| 2016|| 672|| 144|| 18|| 1 |- ! [[10-polytope|10]] ! [[10-cube]] | Dekeract<br>'''Icosa-10-tope'''<br> |{4,3,3,3,3,3,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}<br> |1024||5120||11520||15360||13440||8064||3360||960||180||20||1 |} === Graphs === An '''''n''-cube''' can be projected inside a regular 2''n''-gonal polygon by a [[Petrie polygon#The hypercube and orthoplex families|skew orthogonal projection]], shown here from the line segment to the 16-cube. {| class="wikitable skin-invert-image" |+ [[Petrie polygon]] [[Orthographic projection]]s |- align=center valign=bottom |[[File:1-simplex t0.svg|160px]]<br />[[Line segment]] |[[File:2-cube.svg|160px]]<br />[[Square (geometry)|Square]] |[[File:3-cube graph.svg|160px]]<br />[[Cube]] |[[File:4-cube graph.svg|160px]]<br />[[Tesseract]] |- align=center |[[File:5-cube graph.svg|160px]]<br />[[5-cube]] |[[File:6-cube graph.svg|160px]]<br />[[6-cube]] |[[File:7-cube graph.svg|160px]]<br />[[7-cube]] |[[File:8-cube.svg|160px]]<br />[[8-cube]] |- align=center |[[File:9-cube.svg|160px]]<br />[[9-cube]] |[[File:10-cube.svg|160px]]<br />[[10-cube]] |[[File:11-cube.svg|160px]]<br />[[11-cube]] |[[File:12-cube.svg|160px]]<br />[[12-cube]] |- align=center |[[File:13-cube.svg|160px]]<br />[[13-cube]] |[[File:14-cube.svg|160px]]<br />[[14-cube]] |[[File:15-cube.svg|160px]]<br />[[15-cube]] |<!--[[File:16-cube t0 A15.svg|160px]]<br />[[16-cube]] - this is not in the B16 Coxeter plane--> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)