Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Implicit function theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definitions == Let <math>f: \R^{n+m} \to \R^m</math> be a [[continuously differentiable]] function. We think of <math>\R^{n+m}</math> as the [[Cartesian product]] <math>\R^n\times\R^m,</math> and we write a point of this product as <math>(\mathbf{x}, \mathbf{y}) = (x_1,\ldots, x_n, y_1, \ldots y_m).</math> Starting from the given function <math>f</math>, our goal is to construct a function <math>g: \R^n \to \R^m</math> whose graph <math>(\textbf{x}, g(\textbf{x}))</math> is precisely the set of all <math>(\textbf{x}, \textbf{y})</math> such that <math>f(\textbf{x}, \textbf{y}) = \textbf{0}</math>. As noted above, this may not always be possible. We will therefore fix a point <math>(\textbf{a}, \textbf{b}) = (a_1, \dots, a_n, b_1, \dots, b_m)</math> which satisfies <math>f(\textbf{a}, \textbf{b}) = \textbf{0}</math>, and we will ask for a <math>g</math> that works near the point <math>(\textbf{a}, \textbf{b})</math>. In other words, we want an [[open set]] <math>U \subset \R^n</math> containing <math>\textbf{a}</math>, an open set <math>V \subset \R^m</math> containing <math>\textbf{b}</math>, and a function <math>g : U \to V</math> such that the graph of <math>g</math> satisfies the relation <math>f = \textbf{0}</math> on <math>U\times V</math>, and that no other points within <math>U \times V</math> do so. In symbols, <math display="block">\{ (\mathbf{x}, g(\mathbf{x})) \mid \mathbf x \in U \} = \{ (\mathbf{x}, \mathbf{y})\in U \times V \mid f(\mathbf{x}, \mathbf{y}) = \mathbf{0} \}.</math> To state the implicit function theorem, we need the [[Jacobian matrix and determinant|Jacobian matrix]] of <math>f</math>, which is the matrix of the [[partial derivative]]s of <math>f</math>. Abbreviating <math>(a_1, \dots, a_n, b_1, \dots, b_m)</math> to <math>(\textbf{a}, \textbf{b})</math>, the Jacobian matrix is <math display="block">(Df)(\mathbf{a},\mathbf{b}) = \left[\begin{array}{ccc|ccc} \frac{\partial f_1}{\partial x_1}(\mathbf{a},\mathbf{b}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{a},\mathbf{b}) & \frac{\partial f_1}{\partial y_1}(\mathbf{a},\mathbf{b}) & \cdots & \frac{\partial f_1}{\partial y_m}(\mathbf{a},\mathbf{b}) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{a},\mathbf{b}) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{a},\mathbf{b}) & \frac{\partial f_m}{\partial y_1}(\mathbf{a},\mathbf{b}) & \cdots & \frac{\partial f_m}{\partial y_m}(\mathbf{a},\mathbf{b}) \end{array}\right] = \left[\begin{array}{c|c} X & Y \end{array}\right]</math> where <math>X</math> is the matrix of partial derivatives in the variables <math>x_i</math> and <math>Y</math> is the matrix of partial derivatives in the variables <math>y_j</math>. The implicit function theorem says that if <math>Y</math> is an invertible matrix, then there are <math>U</math>, <math>V</math>, and <math>g</math> as desired. Writing all the hypotheses together gives the following statement.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)