Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inerting system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===FAA rules=== After what it said was seven years of investigation, the FAA proposed a rule in November 2005, in response to an NTSB recommendation, which would require airlines to "reduce the flammability levels of fuel tank vapors on the ground and in the air". This was a shift from the previous 40 years of policy in which the FAA focused only on reducing possible sources of ignition of fuel tank vapors. The FAA issued the final rule on 21 July 2008. The rule amends regulations applicable to the design of new airplanes (14CFR§25.981), and introduces new regulations for continued safety (14CFR§26.31–39), Operating Requirements for Domestic Operations (14CFR§121.1117) and Operating Requirements for Foreign Air Carriers (14CFR§129.117). The regulations apply to airplanes certificated after 1 January 1958 of passenger capacity of 30 or more or payload capacity of greater than 7500 pounds. The regulations are performance based and do not require the implementation of a particular method. The proposed rule would affect all future fixed-wing aircraft designs (passenger capacity greater than 30), and require a retrofit of more than 3,200 Airbus and Boeing aircraft with center wing fuel tanks, over nine years. The FAA had initially planned to also order installation on cargo aircraft, but this was removed from the order by the Bush administration. Additionally, regional jets and smaller commuter planes would not be subject to the rule, because the FAA does not consider them at high risk for a fuel-tank explosion. The FAA estimated the cost of the program at US$808 million over the next 49 years, including US$313 million to retrofit the existing fleet. It compared this cost to an estimated US$1.2 billion "cost to society" from a large airliner exploding in mid-air. The proposed rule came at a time when nearly half of the U.S. airlines' capacity was on carriers that were in bankruptcy.<ref>{{cite news | title=US proposes fuel safety rule for commercial planes | url=http://today.reuters.com/investing/financeArticle.aspx?type=governmentFilingsNews&storyID=URI:urn:newsml:reuters.com:20051114:MTFH44489_2005-11-14_23-19-12_N14432707:1 |accessdate=16 November 2005 | work=Reuters}}</ref> The order affects aircraft whose air conditioning units have a possibility of heating up what can be considered a normally empty center wing fuel tank. Some Airbus A320 and Boeing 747 aircraft are slated for "early action". Regarding new aircraft designs, the Airbus A380 does not have a center wing fuel tank and is therefore exempt, and the Boeing 787 has a fuel tank safety system that already complies with the proposed rule. The FAA has stated that there have been four fuel tank explosions in the previous 16 years—two on the ground, and two in the air—and that based on this statistic and on the FAA's estimate that one such explosion would happen every 60 million hours of flight time, about 9 such explosions will probably occur in the next 50 years. The inerting systems will probably prevent 8 of those 9 probable explosions, the FAA said. Before the inerting system rule was proposed, Boeing stated that it would install its own inerting system on airliners it manufactures beginning in 2005. Airbus had argued that its planes' electrical wiring made the inerting system an unnecessary expense. {{As of |2009}}, the FAA had a pending rule to increase the standards of on board inerting systems again. New technologies are being developed by others to provide fuel tank inerting: # The On-Board Inert Gas Generation System (OBIGGS) system, tested in 2004 by the FAA and NASA, with an opinion written by the FAA in 2005.<ref>{{cite web | title=The FAA is not wholly INERT on OBIGGS | url=http://www.iasa.com.au/obiggs.htm | accessdate=2 December 2009}}</ref> This system is currently in use by many military aircraft types, including the [[C-17]]. This system provides the level of safety that the proposed increase in standards by the proposed FAA rules has been written around. Critics of this system cite the high maintenance cost reported by the military. # Three independent research and development firms have proposed new technologies in response to Research & Development grants by the FAA and SBA. The focus of these grants is to develop a system that is superior to OBIGGS that can replace classic inerting methods. None of these approaches has been validated in the general scientific community, nor have these efforts produced commercially available products. All the firms have issued press releases or given non-peer reviewed talks.<ref>Ref?</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)