Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ingot
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Manufacture== {{See also|Deoxidized steel}} [[File:Cast ingot macrostructure.svg|400x400px|thumb|Crystalline structure of mold cast ingot.]] Ingots are manufactured by the cooling of a molten liquid (known as the melt) in a mold. The manufacture of ingots has several aims. Firstly, the mold is designed to completely solidify and form an appropriate [[grain structure]] required for later processing, as the structure formed by the cooling of the melt controls the physical properties of the material. Secondly, the shape and size of the mold is designed to allow for ease of ingot handling and downstream processing. Finally, the mold is designed to minimize melt wastage and aid ejection of the ingot, as losing either melt or ingot increases manufacturing costs of finished products. A variety of designs exist for the mold, which may be selected to suit the physical properties of the liquid melt and the solidification process. Molds may exist in the top, horizontal or bottom-up pouring and may be fluted or flat walled. The fluted design increases heat transfer owing to a larger contact area. Molds may be either solid "massive" design, sand cast (e.g. for pig iron), or water-cooled shells, depending upon heat transfer requirements. Ingot molds are tapered to prevent the formation of cracks due to uneven cooling. A crack or void formation occurs as the liquid to solid transition has an associated volume change for a constant mass of material. The formation of these ingot defects may render the cast ingot useless and may need to be re-melted, recycled, or discarded. [[File:Fotothek df n-34 0000253 Metallurge für Hüttentechnik.jpg|thumb|Pouring ingots at a steel mill]] [[File:Re-melted tin affected with tin pest is poured into ingot molds at Rock Island Arsenal Joint Manufacturing and Technology Center, DVIDS3878892.jpg|right|thumb|Re-melted [[tin]] affected with [[tin pest]] is poured into ingot molds at [[Rock Island Arsenal|Rock Island Arsenal Joint Manufacturing and Technology Center]], [[Rock Island, Illinois]].]] The physical structure of a crystalline material is largely determined by the method of cooling and precipitation of the molten metal. During the pouring process, metal in contact with the ingot walls rapidly cools and forms either a columnar structure or possibly a "chill zone" of equiaxed [[dendrite (metal)|dendrites]], depending upon the liquid being cooled and the cooling rate of the mold.<ref name="Taylor59">{{cite book|title=Foundry Engineering|author1=Taylor, Howard F |author2=Flemings, Merton. C |author3=Wulff, John |publisher=John Wiley and Sons, New York; Chapman and Hall, London|year=1959|lccn=59011811}}</ref> For a top-poured ingot, as the liquid cools within the mold, differential volume effects cause the top of the liquid to recede leaving a curved surface at the mold top which may eventually be required to be machined from the ingot. The mold cooling effect creates an advancing solidification front, which has several associated zones, closer to the wall there is a solid zone that draws heat from the solidifying melt, for alloys there may exist a "mushy" zone, which is the result of solid-liquid equilibrium regions in the alloy's [[phase diagram]], and a liquid region. The rate of front advancement controls the time that dendrites or nuclei have to form in the solidification region. The width of the mushy zone in an alloy may be controlled by tuning the heat transfer properties of the mold or adjusting the liquid melt alloy compositions. Continuous casting methods for ingot processing also exist, whereby a stationary front of solidification is formed by the continual take-off of cooled solid material, and the addition of a molten liquid to the casting process.<ref>{{cite book | title=Continuous casting | year=2006|author=Müller, H. R. (Ed.)|publisher=John Wiley and Sons}}</ref> Approximately 70 percent of aluminium ingots in the U.S. are cast using the [[direct chill casting]] process, which reduces cracking. A total of 5 percent of ingots must be scrapped because of [[Fracture|stress induced cracks]] and butt deformation.<ref>{{Cite web | title = Direct Chill Casting Model | date = December 2000 | url = http://www.secat.net/docs/projects/Modeling_Optimization_of_Direct_Chill_Casting.pdf | access-date = 2010-03-25 | archive-url = https://web.archive.org/web/20110724055909/http://www.secat.net/docs/projects/Modeling_Optimization_of_Direct_Chill_Casting.pdf | archive-date = 2011-07-24 | url-status = dead }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)