Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse Galois problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Symmetric and alternating groups== [[David Hilbert|Hilbert]] showed that all symmetric and [[alternating group|alternating]] groups are represented as Galois groups of polynomials with rational [[coefficient]]s. The polynomial {{math|''x<sup>n</sup>'' + ''ax'' + ''b''}} has discriminant :<math>(-1)^{\frac{n(n-1)}{2}} \!\left( n^n b^{n-1} + (-1)^{1-n} (n-1)^{n-1} a^n \right)\!.</math> We take the special case :{{math|1=''f''(''x'', ''s'') = ''x<sup>n</sup>'' β ''sx'' β ''s''}}. Substituting a prime integer for {{mvar|s}} in {{math|''f''(''x'', ''s'')}} gives a polynomial (called a '''specialization''' of {{math|''f''(''x'', ''s'')}}) that by [[Eisenstein's criterion]] is [[irreducible polynomial|irreducible]]. Then {{math|''f''(''x'', ''s'')}} must be irreducible over <math>\mathbb{Q}(s)</math>. Furthermore, {{math|''f''(''x'', ''s'')}} can be written :<math>x^n - \tfrac{x}{2} - \tfrac{1}{2} - \left( s - \tfrac{1}{2} \right)\!(x+1)</math> and {{math|''f''(''x'', 1/2)}} can be factored to: :<math>\tfrac{1}{2} (x-1)\!\left( 1+ 2x + 2x^2 + \cdots + 2 x^{n-1} \right)</math> whose second factor is irreducible (but not by Eisenstein's criterion). Only the reciprocal polynomial is irreducible by Eisenstein's criterion. We have now shown that the group {{math|Gal(''f''(''x'', ''s'')/'''Q'''(''s''))}} is [[doubly transitive]]. We can then find that this Galois group has a transposition. Use the scaling {{math|1=(1 β ''n'')''x'' = ''ny''}} to get :<math> y^n - \left \{ s \left ( \frac{1-n}{n} \right )^{n-1} \right \} y - \left \{ s \left ( \frac{1-n}{n} \right )^n \right \}</math> and with :<math> t = \frac{s (1-n)^{n-1}}{n^n},</math> we arrive at: :{{math|1=''g''(''y'', ''t'') = ''y<sup>n</sup>'' β ''nty'' + (''n'' β 1)''t''}} which can be arranged to :{{math|''y<sup>n</sup>'' β ''y'' β (''n'' β 1)(''y'' β 1) + (''t'' β 1)(β''ny'' + ''n'' β 1)}}. Then {{math|''g''(''y'', 1)}} has {{math|1}} as a [[double root|double zero]] and its other {{math|''n'' β 2}} zeros are [[simple zero|simple]], and a transposition in {{math|Gal(''f''(''x'', ''s'')/'''Q'''(''s''))}} is implied. Any finite [[doubly transitive permutation group]] containing a transposition is a full symmetric group. [[Hilbert's irreducibility theorem]] then implies that an infinite set of rational numbers give specializations of {{math|''f''(''x'', ''t'')}} whose Galois groups are {{math|''S<sub>n</sub>''}} over the rational field {{nowrap|<math>\mathbb{Q}</math>.}} In fact this set of rational numbers is dense in {{nowrap|<math>\mathbb{Q}</math>.}} The discriminant of {{math|''g''(''y'', ''t'')}} equals :<math> (-1)^{\frac{n(n-1)}{2}} n^n (n-1)^{n-1} t^{n-1} (1-t),</math> and this is not in general a perfect square. ===Alternating groups=== Solutions for alternating groups must be handled differently for [[parity (mathematics)|odd]] and [[parity (mathematics)|even]] degrees. ====Odd degree==== Let :<math>t = 1 - (-1)^{\tfrac{n(n-1)}{2}} n u^2</math> Under this substitution the discriminant of {{math|''g''(''y'', ''t'')}} equals :<math>\begin{align} (-1)^{\frac{n(n-1)}{2}} n^n (n-1)^{n-1} t^{n-1} (1-t) &= (-1)^{\frac{n(n-1)}{2}} n^n (n-1)^{n-1} t^{n-1} \left (1 - \left (1 - (-1)^{\tfrac{n(n-1)}{2}} n u^2 \right ) \right) \\ &= (-1)^{\frac{n(n-1)}{2}} n^n (n-1)^{n-1} t^{n-1} \left ((-1)^{\tfrac{n(n-1)}{2}} n u^2 \right ) \\ &= n^{n+1} (n-1)^{n-1} t^{n-1} u^2 \end{align}</math> which is a perfect square when {{mvar|n}} is odd. ====Even degree==== Let: :<math>t = \frac{1}{1 + (-1)^{\tfrac{n(n-1)}{2}} (n-1) u^2}</math> Under this substitution the discriminant of {{math|''g''(''y'', ''t'')}} equals: :<math>\begin{align} (-1)^{\frac{n(n-1)}{2}} n^n (n-1)^{n-1} t^{n-1} (1-t) &= (-1)^{\frac{n(n-1)}{2}} n^n (n-1)^{n-1} t^{n-1} \left (1 - \frac{1}{1 + (-1)^{\tfrac{n(n-1)}{2}} (n-1) u^2} \right ) \\ &= (-1)^{\frac{n(n-1)}{2}} n^n (n-1)^{n-1} t^{n-1} \left ( \frac{\left ( 1 + (-1)^{\tfrac{n(n-1)}{2}} (n-1) u^2 \right ) - 1}{1 + (-1)^{\tfrac{n(n-1)}{2}} (n-1) u^2} \right ) \\ &= (-1)^{\frac{n(n-1)}{2}} n^n (n-1)^{n-1} t^{n-1} \left ( \frac{(-1)^{\tfrac{n(n-1)}{2}} (n-1) u^2}{1 + (-1)^{\tfrac{n(n-1)}{2}} (n-1) u^2} \right ) \\ &= (-1)^{\frac{n(n-1)}{2}} n^n (n-1)^{n-1} t^{n-1} \left (t (-1)^{\tfrac{n(n-1)}{2}} (n-1) u^2 \right ) \\ &= n^n (n-1)^n t^n u^2 \end{align}</math> which is a perfect square when {{mvar|n}} is even. Again, Hilbert's irreducibility theorem implies the existence of infinitely many specializations whose Galois groups are alternating groups.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)