Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == ===Squaring and square root functions=== The function {{math|''f'': '''R''' β [0,β)}} given by {{math|1=''f''(''x'') = ''x''<sup>2</sup>}} is not injective because <math>(-x)^2=x^2</math> for all <math>x\in\R</math>. Therefore, {{Mvar|f}} is not invertible. If the domain of the function is restricted to the nonnegative reals, that is, we take the function <math>f\colon [0,\infty)\to [0,\infty);\ x\mapsto x^2</math> with the same ''rule'' as before, then the function is bijective and so, invertible.<ref>{{harvnb|Lay|2006|loc=p. 69, Example 7.24}}</ref> The inverse function here is called the ''(positive) square root function'' and is denoted by <math>x\mapsto\sqrt x</math>. <!-- Repetitive. To be held for a short time until refactor is finished. ===Inverses in higher mathematics=== The definition given above is commonly adopted in [[set theory]] and [[calculus]]. In higher mathematics, the notation :<math>f\colon X \to Y </math> means "{{mvar|f}} is a function mapping elements of a set {{mvar|X}} to elements of a set {{mvar|Yβ}}". The source, {{mvar|X}}, is called the domain of {{mvar|f}}, and the target, {{mvar|Y}}, is called the [[codomain]]. The codomain contains the range of {{mvar|f}} as a [[subset]], and is part of the definition of {{mvar|f}}.<ref>{{harvnb|Smith|Eggen|St. Andre|2006|loc=p. 179}}</ref> When using codomains, the inverse of a function {{math| ''f'': ''X'' β ''Y''}} is required to have domain {{mvar|Y}} and codomain {{mvar|X}}. For the inverse to be defined on all of {{mvar|Y}}, every element of {{mvar|Y}} must lie in the range of the function {{mvar|f}}. A function with this property is called ''onto'' or ''[[Surjective function|surjective]]''. Thus, a function with a codomain is invertible if and only if it is both ''[[Injective function|injective]]'' (one-to-one) and surjective (onto). Such a function is called a one-to-one correspondence or a [[bijection]], and has the property that every element {{math| ''y'' β ''Y''}} corresponds to exactly one element {{math| ''x'' β ''X''}}. --> === Standard inverse functions === The following table shows several standard functions and their inverses: {| class="wikitable" align="center" |+Inverse arithmetic functions |- !scope="col" align="center" | Function {{math|''f''(''x'')}} !scope="col" align="center" | Inverse {{math|''f''<sup>ββ1</sup>(''y'')}} !scope="col" align="center" | Notes |- | align="center" | {{math|''x'' [[addition|+]] ''a''}} | align="center" | {{math|''y'' [[subtraction|β]] ''a''}} | |- | align="center" | {{math|''a'' β ''x''}} | align="center" | {{math|''a'' β ''y''}} | |- | align="center" | {{math|[[multiplication|''mx'']]}} | align="center" | {{sfrac|{{mvar|y}}|{{mvar|m}}}} | {{math|''m'' β 0}} |- | align="center" | {{sfrac|1|{{mvar|x}}}} (i.e. {{math|''x''<sup>β1</sup>}}) | align="center" | {{sfrac|1|{{mvar|y}}}} (i.e. {{math|''y''<sup>β1</sup>}}) | {{math|''x'',β''y'' β 0}} |- | align="center" | {{math|''x''<sup>''p''</sup>}} | align="center" | <math>\sqrt[p]y</math> (i.e. {{math|''y''<sup>1/''p''</sup>}}) | integer {{math|''p'' > 0}}; {{math|''x'',β''y'' β₯ 0}} if {{math|p}} is even |- | align="center" | {{math|''a''<sup>''x''</sup>}} | align="center" | {{math|[[logarithm|log]]<sub>''a''</sub>β''y''}} | {{math|''y'' > 0}} and {{math|''a'' > 0}} and {{math|''a'' β 1}} |- | align="center" | {{math|''x''[[e (mathematical constant)|''e'']]<sup>''x''</sup>}} | align="center" | {{math|[[Lambert W function|W]]β(''y'')}} | {{math|''x'' β₯ β1}} and {{math|''y'' β₯ β1/''e''}} |- | align="center" | [[trigonometric function]]s | align="center" | [[inverse trigonometric function]]s | various restrictions (see table below) |- | align="center" | [[hyperbolic function]]s | align="center" | [[inverse hyperbolic function]]s | various restrictions |} === Formula for the inverse === Many functions given by algebraic formulas possess a formula for their inverse. This is because the inverse <math>f^{-1} </math> of an invertible function <math>f\colon\R\to\R</math> has an explicit description as : <math>f^{-1}(y)=(\text{the unique element }x\in \R\text{ such that }f(x)=y)</math>. This allows one to easily determine inverses of many functions that are given by algebraic formulas. For example, if {{mvar|f}} is the function : <math>f(x) = (2x + 8)^3 </math> then to determine <math>f^{-1}(y) </math> for a real number {{Mvar|y}}, one must find the unique real number {{mvar|x}} such that {{math|1= (2''x'' + 8)<sup>3</sup> = ''y''}}. This equation can be solved: : <math>\begin{align} y & = (2x+8)^3 \\ \sqrt[3]{y} & = 2x + 8 \\ \sqrt[3]{y} - 8 & = 2x \\ \dfrac{\sqrt[3]{y} - 8}{2} & = x . \end{align}</math> Thus the inverse function {{math|''f''<sup>ββ1</sup>}} is given by the formula : <math>f^{-1}(y) = \frac{\sqrt[3]{y} - 8} 2.</math> Sometimes, the inverse of a function cannot be expressed by a [[closed-form formula]]. For example, if {{mvar|f}} is the function : <math>f(x) = x - \sin x ,</math> then {{mvar|f}} is a bijection, and therefore possesses an inverse function {{math|''f''<sup>ββ1</sup>}}. The [[Kepler's equation#Inverse Kepler equation|formula for this inverse]] has an expression as an infinite sum: : <math> f^{-1}(y) = \sum_{n=1}^\infty \frac{y^{n/3}}{n!} \lim_{ \theta \to 0} \left( \frac{\mathrm{d}^{\,n-1}}{\mathrm{d} \theta^{\,n-1}} \left( \frac \theta { \sqrt[3]{ \theta - \sin( \theta )} } \right)^n \right). </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)