Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Invertible matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Other properties === Furthermore, the following properties hold for an invertible matrix {{math|'''A'''}}: * <math>(\mathbf A^{-1})^{-1} = \mathbf A</math> * <math>(k \mathbf A)^{-1} = k^{-1} \mathbf A^{-1}</math> for nonzero scalar {{mvar|k}} * <math>(\mathbf{Ax})^+ = \mathbf x^+ \mathbf A^{-1}</math> if {{math|'''A'''}} has orthonormal columns, where {{math|{{sup|+}}}} denotes the [[Moore–Penrose inverse]] and {{math|'''x'''}} is a vector * <math>(\mathbf A^\mathrm{T})^{-1} = (\mathbf A^{-1})^\mathrm{T}</math> * For any invertible {{mvar|n}}-by-{{mvar|n}} matrices {{math|'''A'''}} and {{math|'''B'''}}, <math>(\mathbf{AB})^{-1} = \mathbf B^{-1} \mathbf A^{-1}.</math> More generally, if <math>\mathbf A_1, \dots, \mathbf A_k</math> are invertible {{mvar|n}}-by-{{mvar|n}} matrices, then <math>(\mathbf A_1 \mathbf A_2 \cdots \mathbf A_{k-1} \mathbf A_k)^{-1} = \mathbf A_k^{-1} \mathbf A_{k-1}^{-1} \cdots \mathbf A_2^{-1} \mathbf A_1^{-1}.</math> *<math>\det \mathbf A^{-1} = (\det \mathbf A)^{-1}.</math> The rows of the inverse matrix {{math|'''V'''}} of a matrix {{math|'''U'''}} are [[orthonormal]] to the columns of {{math|'''U'''}} (and vice versa interchanging rows for columns). To see this, suppose that {{math|1='''UV''' = '''VU''' = '''I'''}} where the rows of {{math|'''V'''}} are denoted as <math>v_i^{\mathrm{T}}</math> and the columns of {{math|'''U'''}} as <math>u_j</math> for <math>1 \leq i,j \leq n.</math> Then clearly, the [[Dot product|Euclidean inner product]] of any two <math>v_i^{\mathrm{T}} u_j = \delta_{i,j}.</math> This property can also be useful in constructing the inverse of a square matrix in some instances, where a set of [[orthogonal]] vectors (but not necessarily orthonormal vectors) to the columns of {{math|'''U'''}} are known. In which case, one can apply the iterative [[Gram–Schmidt process]] to this initial set to determine the rows of the inverse {{math|'''V'''}}. A matrix that is its own inverse (i.e., a matrix {{math|'''A'''}} such that {{math|1='''A''' = '''A'''{{sup|−1}}}} and consequently {{math|1='''A'''{{sup|2}} = '''I'''}}) is called an [[involutory matrix]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)