Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jacobi elliptic functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition as trigonometry: the Jacobi ellipse== [[File:Jacobi Elliptic Functions (on Jacobi Ellipse).svg|right|thumb|upright=1.5|Plot of the Jacobi ellipse (''x''<sup>2</sup> + ''y''<sup>2</sup>/''b''<sup>2</sup> = 1, ''b'' real) and the twelve Jacobi elliptic functions ''pq''(''u'',''m'') for particular values of angle ''φ'' and parameter ''b''. The solid curve is the ellipse, with ''m'' = 1 β 1/''b''<sup>2</sup> and ''u'' = ''F''(''φ'',''m'') where ''F''(⋅,⋅) is the [[elliptic integral]] of the first kind (with parameter <math>m=k^2</math>). The dotted curve is the unit circle. Tangent lines from the circle and ellipse at ''x'' = cd crossing the ''x''-axis at dc are shown in light grey.]] <math> \cos \varphi, \sin \varphi </math> are defined on the unit circle, with radius ''r'' = 1 and angle <math>\varphi =</math> arc length of the unit circle measured from the positive ''x''-axis. Similarly, Jacobi elliptic functions are defined on the unit ellipse,{{citation needed|reason= see talk of this section.|date=July 2016}} with ''a'' = 1. Let :<math> \begin{align} & x^2 + \frac{y^2}{b^2} = 1, \quad b > 1, \\ & m = 1 - \frac{1}{b^2}, \quad 0 < m < 1, \\ & x = r \cos \varphi, \quad y = r \sin \varphi \end{align} </math> then: :<math> r( \varphi,m) = \frac{1} {\sqrt {1-m \sin^2 \varphi}}\, . </math> For each angle <math>\varphi</math> the parameter :<math>u = u(\varphi,m)=\int_0^\varphi r(\theta,m) \, d\theta</math> (the incomplete elliptic integral of the first kind) is computed. On the unit circle (<math>a=b=1</math>), <math>u</math> would be an arc length. However, the relation of <math>u</math> to the [[Ellipse#Arc length|arc length of an ellipse]] is more complicated.<ref>{{dlmf|first=B. C.|last=Carlson|id=19.8.E13|title=Elliptic Integrals}}</ref> Let <math>P=(x,y)=(r \cos\varphi, r\sin\varphi)</math> be a point on the ellipse, and let <math>P'=(x',y')=(\cos\varphi,\sin\varphi)</math> be the point where the unit circle intersects the line between <math>P</math> and the origin <math>O</math>. Then the familiar relations from the unit circle: :<math> x' = \cos \varphi, \quad y' = \sin \varphi</math> read for the ellipse: :<math>x' = \operatorname{cn}(u,m),\quad y' = \operatorname{sn}(u,m).</math> So the projections of the intersection point <math>P'</math> of the line <math>OP</math> with the unit circle on the ''x''- and ''y''-axes are simply <math>\operatorname{cn}(u,m)</math> and <math>\operatorname{sn}(u,m)</math>. These projections may be interpreted as 'definition as trigonometry'. In short: :<math> \operatorname{cn}(u,m) = \frac{x}{r(\varphi,m)}, \quad \operatorname{sn}(u,m) = \frac{y}{r(\varphi,m)}, \quad \operatorname{dn}(u,m) = \frac{1}{r(\varphi,m)}. </math> For the <math>x</math> and <math>y</math> value of the point <math>P</math> with <math>u</math> and parameter <math>m</math> we get, after inserting the relation: :<math>r(\varphi,m) = \frac 1 {\operatorname{dn}(u,m)} </math> into: <math>x = r(\varphi,m) \cos (\varphi), y = r(\varphi,m) \sin (\varphi)</math> that: :<math> x = \frac{\operatorname{cn}(u,m)} {\operatorname{dn}(u,m)},\quad y = \frac{\operatorname{sn}(u,m)} {\operatorname{dn}(u,m)}.</math> The latter relations for the ''x''- and ''y''-coordinates of points on the unit ellipse may be considered as generalization of the relations <math> x = \cos \varphi, y = \sin \varphi</math> for the coordinates of points on the unit circle. The following table summarizes the expressions for all Jacobi elliptic functions pq(u,m) in the variables (''x'',''y'',''r'') and (''Ο'',dn) with <math display="inline">r = \sqrt{x^2+y^2}</math> {| class="wikitable" style="text-align:center" |+ Jacobi elliptic functions pq[''u'',''m''] as functions of {''x'',''y'',''r''} and {''φ'',dn} !colspan="2" rowspan="2"| !colspan="4"|q |- ! c ! s ! n ! d |- !rowspan="6"|p |- ! c |1 || <math>x/y=\cot(\varphi)</math> || <math>x/r=\cos(\varphi)</math> || <math>x=\cos(\varphi)/\operatorname{dn}</math> |- ! s |<math>y/x=\tan(\varphi)</math> || 1 ||<math>y/r=\sin(\varphi)</math> || <math>y=\sin(\varphi)/\operatorname{dn}</math> |- ! n |<math>r/x=\sec(\varphi)</math> || <math>r/y=\csc(\varphi)</math> || 1 || <math>r=1/\operatorname{dn}</math> |- ! d | <math>1/x=\sec(\varphi)\operatorname{dn}</math> || <math>1/y=\csc(\varphi)\operatorname{dn}</math> || <math>1/r=\operatorname{dn} </math> || 1 |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)