Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Kennedy–Thorndike experiment
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Importance for relativity === In 1905, it had been shown by [[Henri Poincaré]] and [[Albert Einstein]] that the [[Lorentz transformation]] must form a [[Lorentz group|group]] to satisfy the [[principle of relativity]] (see [[History of Lorentz transformations]]). This requires that length contraction and time dilation have the exact relativistic values. Kennedy and Thorndike now argued that they could derive the complete Lorentz transformation solely from the experimental data of the Michelson–Morley experiment and the Kennedy–Thorndike experiment. But this is not strictly correct, since length contraction and time dilation having their exact relativistic values are sufficient but not necessary for the explanation of both experiments. This is because length contraction solely in the direction of motion is only one possibility to explain the Michelson–Morley experiment. In general, its null result requires that the ''ratio'' between transverse and longitudinal lengths corresponds to the Lorentz factor – which includes infinitely many combinations of length changes in the transverse and longitudinal direction. This also affects the role of time dilation in the Kennedy–Thorndike experiment, because its value depends on the value of length contraction used in the analysis of the experiment. Therefore, it's necessary to consider a third experiment, the [[Ives–Stilwell experiment]], in order to derive the Lorentz transformation from experimental data alone.<ref name=rob /> More precisely: In the framework of the [[Test theories of special relativity|Robertson-Mansouri-Sexl test theory]],<ref name=rob /><ref name=sexl /> the following scheme can be used to describe the experiments: α represents time changes, β length changes in the direction of motion, and δ length changes perpendicular to the direction of motion. The Michelson–Morley experiment tests the relationship between β and δ, while the Kennedy–Thorndike experiment tests the relationship between α and β. So α depends on β which itself depends on δ, and only combinations of those quantities but not their individual values can be measured in these two experiments. Another experiment is necessary to ''directly'' measure the value of one of these quantities. This was actually achieved with the Ives-Stilwell experiment, which measured α as having the value predicted by relativistic time dilation. Combining this value for α with the Kennedy–Thorndike null result shows that β necessarily must assume the value of relativistic length contraction. And combining this value for β with the Michelson–Morley null result shows that δ must be zero. So the necessary components of the Lorentz transformation are provided by experiment, in agreement with the theoretical requirements of [[group theory]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)